The Exciting Universe Of Music Theory
presents

Antiscales

It all started, for me, with watching this video by 12tone:

For a primer on what I'll be investigating here, I really recommend you watch that video first, as it was my own introduction to the subject and the basis for everything I'll be doing to follow up on it. Much of the material on this page is merely a reiteration of the same conclusions 12tone came to, but with more verbose examples and not much additional insight.

Antiscales were invented (or discovered, or reported) by Reuben Nebbett-Blades, who sent an email describing them to 12tone in March of 2019. Reuben (according to 12tone) made the observation that some, but not all, diatonic modes had antiscales that were essentially other diatonic modes. This concept was formalized by 12tone in the video above. So, don't get any notions that these are well-established kernels of music theory - this is fresh, hot steaming stuff that just came out of the oven. Also, I didn't invent any of it and have never met any of the folks who did.

For this exploration, I am rejecting my usual definition of a "scale", by allowing scales that contain leaps greater than a major third. While the omisison of leaps makes musical sense, it introduces gaps into the combinatorial permutations and gets in the way when doing mathematical stuff. So here we will consider a "scale" to be any pitch class set that has a root tone, regardless of its intervallic content. A prerequisite for understanding some of the formulas in this article is understanding how I represent scales as binary words; so if this is unfamiliar territory go and read about it now.

Our first step is to figure out how to compute an antiscale. We know that an antiscale is the complement, with an added root. Finding the complement of a scale is done with a bitwise XOR against the Chromatic Scale (111111111111, which is the binary representation of 2^12 or the decimal number 4095). XOR does what we want: for a binary word with 12 bits, it turns all the ON bits OFF, and turns the OFF bits ON.

Once we have the complement, we add a root tone to it. In our numbering of scales, the root tone has the binary digit 1. This means any legit scale (with a root) will be an odd number, and any complement of a scale (lacking a root) will be even. To create an antiscale, the formula is simple: take the complement of the original scale using that binary XOR, and then add 1 to it.

In code, it looks like this:

function antiscale($scalenum) { return (4095 ^ $scalenum) + 1; }

Easy, right? But we can make it even easier.

When we combine a scale and its complement, we get the complete set of 12, aka the 12-tone chromatic scale. The binary number for the chromatic scale is 4095, aka the binary 111111111111. When we combine a scale and its antiscale, we've again constructed the whole set of 12 tones, but with an extra root tone added because it is present in both the scales. So, the sum of a scale and its antiscale is 4095 + 1 = 4096. So the easy formula for an antiscale becomes evident:

function antiscale($scalenum) { return 4096 - $scalenum; }

By this formula it also becomes apparent that every scale will have one and only one antiscale, every antiscale is unique (no scale has more than one antiscale), and the scales and antiscales will be in pairs that sum up to 4096. The relationship is bidirectional: the antiscale of an antiscale of a scale is itself. In the extreme case, the 12 tone chromatic scale (4095) has the antiscale of just a root tone (1), so in essence the antiscale of a 12-note scale is a 1-note scale, and vice-versa.

We can make some more obvious observations about the cardinality of antiscales. For a scale with cardinality d, the cardinality of the complement will be (12 - d), and the cardinality of the antiscale will be ((12 - d) + 1), or more simply (13 - d). Consequently all heptatonic scales will have a hexatonic antiscale, and vice-versa. This relationship of cardinality suffices to show that no scale can ever be its own antiscale, because no scale can have a non-integral cardinality. This assertion is also consistent with the formula A = 4096 - S, because the only S that would satisfy A = S is (4096 / 2) = 2048, which has no root tone (which we can see at a glance because it's an even number) and thus is not a scale.

Now we can look at an example. 12tone sprints through it pretty fast, so let me break it down in steps that you can read at a more leisurely pace.

Scale 2741: MajorScale 1355: Raga BhavaniScale 1387: Locrian



Figure 1 The major scale; its antiscale Raga Bhavani, and Locrian - a diatonic scale which is a mode of Major and a superset of Raga Bhavani. The one note difference between 1355 and 1387 is the perfect 4th interval, highlighted in red.

The Major scale is 2741. The antiscale of that is 1355 Aeolorimic, which 12Tone calls "Antimajor". Raga Bhavani is a hexatonic subset of 1387 Locrian; Raga Bhavani is the Locrian scale with one note removed. And... Locrian is a mode of Major. This is the connection that Reuben observed, 12tone correctly observed that this is pretty neat, and gave the relationship a name: Antiscale Equivalence (AE).

The contrary example given by 12tone is 1453 Aeolian, also known as Natural Minor. The antiscale of 1453 is 2643 Raga Hamsanandi. Raga Hamsanandi is not a hexatonic subset of any of the modes of Aeolian, so therefore Aeolian does not have Antiscale Equivalence.

Scale 1453: AeolianScale 2643: Raga Hamsanandi


Figure 2 The minor scale, and its antiscale Raga Hamsanandi. There is no mode of 1453 that contains all the tones of 2643, thus the scale does not have Antiscale Equivalence.

12tone says the four diatonic modes with Antiscale Equivalence are Major, Locrian, Lydian, and Phrygian. It's true! Here are the antiscales of each diatonic mode, and the diatonic modes that we can achieve by adding one extra tone to the antiscale:

ScaleAntiscaleSubset of:
2741 Major
1355 Aeolorimic
1387 Locrian
1709 Dorian
2387 Paptimic
NONE
1451 Phrygian
2645 Raga Mruganandana
2773 Lydian
2773 Lydian
1323 Ritsu
1387 Locrian
1451 Phrygian
1717 Mixolydian
2379 Raga Gurjari Todi
NONE
1453 Aeolian
2643 Raga Hamsanandi
NONE
1387 Locrian
2709 Raga Kumud
2741 Major
2773 Lydian
Figure 3 The diatonic modes, their antiscales, and diatonic modes that are supersets of those antiscales.

For want of a better term, I'll call these the Superantimodes, and they can be plural. For example, notice that Major and Lydian are the superantimodes of Locrian, and Locrian is the superantimode of both Major and Lydian. Representing the superantimode relationship as an arrow , we can build a network graph showing the superantimode relationships between modes:

Figure 4 The relationship of diatonic Scales to their Superantimodes.

From our example of the diatonic set it's apparent that within a modal family we may see some scales with AE, and some without; some scales - like Locrian - will have multiple superantimodes. And conversely, some modes - like Lydian - will be the superantimode of more than one of its modal siblings. 12tone mentions this plurality in the video at 7:41.

The diagram above might insinuate that there is a smooth continuum from Major to Phrygian, but that would be a misinterpretation. Connection by an arrow in the network graph really means the modes are very different, and where a node has more than one connection, its adjacent nodes are similar to each other in that they are both additions of a single note to a common antiscale. As a case in point, Phrygian and Locrian are similar scales differing only by the alteration of the 5th, and Major and Lydian are similar to each other differing only by the alteration of the 4th.

A fact that we can accept immediately is that AE will only occur for heptatonic scales. For as we determined above, an antiscale has the cardinality 13 - d, and any superset (adding just one tone) will have cardinality (13 - d) + 1. For that superset to be an superantimode, the cardinality of the superset must equal the cardinality of the original scale. So (13 - d) + 1 = d, which solves as d = 7.

Another observation is that like the pairwise relationship of antiscales, superantimodes are always reciprocal. If Scale A has a superantimode B, then Scale B will have a superantimode A. Superantimode relationships are always reciprocal, even if they're not one-to-one.

When a scale has AE, its inverse will also have AE, without exception. We can see in the lists below that pairs of families have the same Forte Class numbers; that's because classes are related by rotation or inversion, whereas our modal families are only related by rotation. For every modal family that has AE scales, its inverted relatives from the same Forte class will have the same pattern. For example, in Figure 5: scale 2143 inverted is 3907, and scale 2017 inverted is 253.


Figure 5 AE pairs from the same Forte pitch class 7-2, but different modal families related by inversion.

When 12tone says "there are 16 sets represented", he isn't talking about modal families, he means 16 different Forte classes, each of which may be invertible or non-invertible. The property that 12tone calls "invertible" has another name: chirality. A chiral scale has an inverse that is different from itself and all its own modes; the inverse can not be produced by rotation. A chiral scale is like a left glove; no matter how you turn it around (excluding turning it inside-out), it cannot be transformed into a right glove. An achiral scale is like a tube sock: it has no left or right handedness, and its reflection looks the same as a rotation of itself. The achiral sets are the ones that have at least one axis of reflective symmetry.

What we see is that in chiral scales (the ones with no symmetry), the AE scales will have an enantiomorph with its own superantimode - like matching fingers on a left and right glove. In scales that are chiral (with symmetry), there is no enantiomorph, and the superantiscales ARE the inverse.

What patterns exist?

After crunching all the numbers, it turns out that most of the superantimode relationships are between two modes, or in a linear cycle of 3 or 4 modes.

There are 12 modal families that contain a single pair of AE scales that are superantimodes of each other. Most of them are chiral, and their enantiomorphs are superantimodes of each other too. In the achiral ones (that have reflective symmetry) - 7-Z37 and 7-Z17 - The AE scales are both inverses and superantimodes of each other.

Forte ClassChiralityModal FamilyAE modes
7-2YES
191 Ultra-Alt 67
2143 Alt ♮7𝄫34𝄫♭56
3119 Alt ♮7♯6𝄫345
3607 Alt ♮7♯6𝄪5𝄫3
3851 Phrygian +𝄪5♯𝄪4
3973 Superlydian Augmented ♮2𝄪5♯𝄪34
2017 Dominant +𝄪34♯𝄪2
7-2YES
253 Alt ♮2𝄫5𝄫♭6𝄫𝄫7
1087 Infra-Alt 5♭7𝄫𝄫6
2591 Alt ♮67𝄫34𝄫♭5
3343 Phrygian +𝄫34
3719 Phrygian+𝄫3𝄪45
3907 Superlydian Augmented ♭2𝄪35♯𝄪4
4001 Superlydian Augmented 𝄪5♯𝄪234
7-3YES
319 Ultra-Alt 6
2207 Alt ♮7𝄫346𝄫♭5
3151 Alt ♮7♯6𝄫34
3623 Ionian ♭2♯6𝄫3𝄪5
3859 Ionian ♭2♯6𝄪5♯𝄪4
3977 Superlydian Augmented 𝄪5♯𝄪34
1009 Lydian ♭6♯3𝄪2𝄫7
7-3YES
505 Major Locrian ♯2𝄫6𝄫♭7
575 Infra-Alt 5𝄫𝄫6
2335 Byzantine
3215 Neapoitan Major ♯6𝄫34
3655 Phrygian +𝄪5𝄫3
3875 Superlydian Augmented ♭2𝄪5♯𝄪4
3985 Superlydian Augmented 𝄪25♯𝄪34
7-11YES
379 Alt 𝄫5𝄫♭67
2237 Alt ♮27𝄫56
1583 Alt ♮6𝄫345
2839 Neapolitan Major ♭4♯5𝄫3
3467 Phrygian +𝄪4
3781 Ionian ♯6𝄪345
1969 Dominant +♯3𝄪24
7-11YES
445 Alt ♮2𝄫56𝄫♭7
1135 Alt 𝄫345𝄫♭6
2615 Alt ♮67𝄫35
3355 Phrygian +♭4
3725 Melodic ♯6𝄪45
1955 Dominant +♭2♯3𝄪4
3025 Ionian +𝄪234
7-Z37NO
443 Alt 𝄫56𝄫♭7
2269 Nomadic minor
1591 Alt ♮6𝄫35
2843 Neapolitan Major ♭4♯5
3469 Melodic +♯6𝄪4
1891 Lydian 7+♭2♯3
2993 Ionian +♯3𝄪24
7-Z17NO
631 Infra-Alt 6♭4
2363 Unorthodox
3229 Melodic ♯6♭4
1831 Dominant +♭2𝄫3
2963 Ionian +♭2𝄪4
3529 Superlydian Augmented 𝄪34
953 Mela Yagapriya
7-23YES
701 Alt ♮2𝄫567
1199 Alt 𝄫3456
2647 Bohemian
3371 Neapoitan Major ♯56
3733 Ionian ♯6𝄪45
1957 Dominant +♯3𝄪4
1513 Lydian 7♭6♯23
7-23YES
757 Major Locrian 𝄫67
1213 Alt ♮2𝄫56
1327 Alt 𝄫345
2711 Erratic
3403 Phrygian +
3749 Raga Sorati
1961 Dominant +♯23𝄪4
7-27YES
949 Mela Mararanjani
1261 Aeolian ♭5𝄫6
1339 Alt 𝄫5
2717 Melodic ♭4
1703 Mela Vanaspati
2899 Lydian +♭2
3497 Superlydian Augmented 𝄪4
7-27YES
695 Alt 𝄫3567
2395 Alt ♮7
3245 Melodic ♯6
1835 Dorian +♭2
2965 Ionian +𝄪4
1765 Lydian 7♯3
1465 Dominant ♭6♯2
Figure 6 All the sets with a single pair of reciprocal superantimodes.

There are three modal families with two connected AE pairs. These sets are all achiral (they have reflective symmetry), and exhibit the interesting pattern that the superantimode pairs aren't inverses of each other, but the pairs have one from each inverted couple. For example, in class 7-8, the scales 381 and 2001 are inverses, as are the scales 3723 and 2607.

Forte ClassChiralityModal FamilyAE modes
7-8NO
381 Alt ♮2𝄫5𝄫♭67
1119 Infra-Alt 56♭7
2607 Alt ♮67𝄫345
3351 Alt ♮7♯56𝄫3
3723 Phrygian +𝄪45
3909 Superlydian Augmented ♮2𝄪35♯𝄪4
2001 Dominant +𝄪234
7-22NO
871 Hungarian Romani Minor 4th Mode
2483 Double Harmonic
3289 Lydian ♯26
923 Alt ♮5𝄫7
2509 Double Harmonic Minor
1651 Asian
2873 Ionian Augmented ♯2
7-34NO
1371 Superlocrian
2733 Melodic Minor Ascending
1707 Dorian ♭2
2901 Lydian Augmented
1749 Acoustic
1461 Major-Minor
1389 Minor Locrian
Figure 7 All the sets with two unconnected pairs of reciprocal superantimodes.

There are three modal families with a linear cycle of 3 modes. The 7-7 class has the predictable chiral relationship between the two modal sets. Set 7-15 is elegant with its scale 1821 being palindromic (so it is its own inverse), and its two superantimodes 2283 and 2787 are inverses of each other.

Forte ClassChiralityModal FamilyAE modes
7-7YES
463 Infra-Alt 7♭5
2279 Apathetic minor
3187 Ionian ♭25♯6
3641 Ionian ♯26𝄪5
967 Mela Salaga
2531 Lydian ♭26♯3
3313 Lydian ♯36𝄪2
7-7YES
487 Locrian 𝄫36𝄫♭7
2291 Pacific
3193 Ionian ♭5♯26
911 Phrygian 𝄫347
2503 Lydian ♭26𝄫3
3299 Lydian ♭2♯36
3697 Superlydian Augmented 𝄪25
7-15NO
471 Alt 𝄫36𝄫♭7
2283 Pacific minor
3189 Ionian ♭5♯6
1821 Dorian +♭4
1479 Phrygian ♯4𝄫3
2787 Lydian ♭2♯3
3441 Superlydian Augmented 𝄪2
Figure 8 All the sets with a chain of 3 related superantimodes.

There are two modal families with a linear cycle of 4 modes. It is interesting to note that these are the most evenly-spaced and the least evenly-spaced scales of all the heptatonics, and here we meet with our favourite set, 7-35 the major aka diatonic. Of the four connected scales, the two middle ones with two superantiscales (eg Locrian and Lydian) are inverses of each other, and the two outer ones (eg Major and Phrygian) are also inverses. You won't find the 7-1 class mentioned in the Study of Scales due to its large "leap" (disqualifying it from being called a True Scale) but it's included here for the reasons explained in the intro.

Forte ClassChiralityModal FamilyAE modes
7-1NO
127 Heptatonic Chromatic
2111 Alt ♮7𝄫34𝄫♭5𝄫𝄫6
3103 Alt ♮7♯6𝄫34𝄫♭5
3599 Heptatonic Chromatic 4
3847 Heptatonic Chromatic 5
3971 Superlydian Augmented ♭2𝄪5♯𝄪34
4033 Alt-Maximus
7-35NO
1387 Locrian
2741 Major
1709 Dorian
1451 Phrygian
2773 Lydian
1717 Mixolydian
1453 Aeolian
Figure 9 All the sets with a chain of 4 related superantimodes.

There are two modal families where one mode is related by AE to 3 other modes. Predictably, they are chiral enantiomorphs of each other, from the same Forte class. The central most-connected mode in each family are inverses; 3277 is the inverse of 1639.

Forte ClassChiralityModal FamilyAE modes
7-21YES
823 Alt 𝄫357
2459 Neapoitan Minor ♭4
3277 Lydian ♭3♯6
1843 Dominant +♭2
2969 Ionian +♯2𝄪4
883 Locrian ♮3𝄫7
2489 Ionian ♯2♭6
7-21YES
827 Alt 𝄫57
2461 Harmonic minor ♭4
1639 Locrian ♮6𝄫3
2867 Ionian +♭2
3481 Ionian +♯26𝄪4
947 Mela Gayakapriya
2521 Mela Dhatuvardhani
Figure 10 All the sets where one mode has a superantimode relationship with 3 others that are otherwise unrelated.

The last and most impressive modal family is this one. All 7 modes have AE, with Neapolitan Major occupying a central node connected to all others. Its palindromic symmetry means it is its own inverse, and the six others are paired up as inverses too. The elegance of this set is apparent when you observe that it is a whole tone scale with one of the gaps filled. There are six gaps in the whole tone scale, producing 6 scales with similar placement of gaps; but then there is the Neapolitan Major scale where the filled gap acts as the root, allowing the whole tone pattern to shift by a semitone. That shift puts it out of phase with all its siblings, with notes where there are gaps and gaps where there are notes... consequently Neapolitan Major is superantimodal to all its siblings - a quintessential black sheep.

Forte ClassChiralityModal FamilyAE modes
7-33NO
1367 Leading Whole-Tone Inverse
2731 Neapolitan Major
3413 Lydian +♯6
1877 Lydian 7+
1493 Lydian Minor
1397 Major Locrian
1373 Alt ♮2
Figure 11 The 7-33 set includes one mode having a superantimode relationship with all 6 others.

Showing my work

Now with our formula for computing superantimodes (the existence of which signifies AE), we can easily iterate through all the modal families and map out the superantimodes. There are a total of 66 heptatonic modal families. 23 of those modal families contain one or more AE scales, and those families belong to 16 pitch class sets. Seven of those sixteen sets are chiral and comprise two enantiomorphic modal families (making 14), the other nine are achiral. This is the potatoes of this article... every heptatonic modal family, with all the superantimodes shown. Enjoy!

Scale family 127: Heptatonic Chromatic - Forte class: 7-1
ScaleAntiscaleSuperantimodes
127 Heptatonic Chromatic3969 Hexatonic Chromatic Descending
3971 Superlydian Augmented ♭2𝄪5♯𝄪34
4033 Alt-Maximus
2111 Alt ♮7𝄫34𝄫♭5𝄫𝄫61985 MEWian
4033 Alt-Maximus
3103 Alt ♮7♯6𝄫34𝄫♭5993 GAVian
NONE
3599 Heptatonic Chromatic 4497 Kadimic
NONE
3847 Heptatonic Chromatic 5249 BOQian
NONE
3971 Superlydian Augmented ♭2𝄪5♯𝄪34125 ATWian
127 Heptatonic Chromatic
4033 Alt-Maximus 63 Hexatonic Chromatic
127 Heptatonic Chromatic
2111 Alt ♮7𝄫34𝄫♭5𝄫𝄫6
Scale family 191: Ultra-Alt 67 - Forte class: 7-2
ScaleAntiscaleSuperantimodes
191 Ultra-Alt 673905 YUSian
NONE
2143 Alt ♮7𝄫34𝄫♭561953 MACian
2017 Dominant +𝄪34♯𝄪2
3119 Alt ♮7♯6𝄫345977 Kocrimic
NONE
3607 Alt ♮7♯6𝄪5𝄫3489 Phrathimic
NONE
3851 Phrygian +𝄪5♯𝄪4245 Raga Dipak
NONE
3973 Superlydian Augmented ♮2𝄪5♯𝄪34123 ASUian
NONE
2017 Dominant +𝄪34♯𝄪22079 Hexatonic Chromatic 4
2143 Alt ♮7𝄫34𝄫♭56
Scale family 223: Ultra-Alt 7 - Forte class: 7-4
ScaleAntiscaleSuperantimodes
223 Ultra-Alt 73873 YOYian
NONE
2159 Alt ♮7𝄫345𝄫♭61937 Galimic
NONE
3127 Alt ♮7♯6𝄫35969 Ionogimic
NONE
3611 Alt ♮7♯6𝄪5485 Stoptimic
NONE
3853 Melodic ♯6𝄪5♯𝄪4243 BOMian
NONE
1987 Dominant +♭2𝄪342109 MUVian
NONE
3041 Superlydian Augmented ♮6𝄪34♯𝄪21055 GIHian
NONE
Scale family 239: Infra-Alt 6𝄫𝄫7 - Forte class: 7-5
ScaleAntiscaleSuperantimodes
239 Infra-Alt 6𝄫𝄫73857 Ponimic
NONE
2167 Alt ♮7𝄫35𝄫♭61929 Aeolycrimic
NONE
3131 Alt ♮7♯6𝄫5965 Ionothimic
NONE
3613 Melodic ♭4♯6𝄪5483 Kygimic
NONE
1927 Alt ♮6♯5𝄫3𝄪42169 NEFian
NONE
3011 Ionian +♭2𝄪341085 GOZian
NONE
3553 Superlydian Augmented 𝄪34♯𝄪2543 DENian
NONE
Scale family 247: Infra-Alt 6♭4𝄫𝄫7 - Forte class: 7-5
ScaleAntiscaleSuperantimodes
247 Infra-Alt 6♭4𝄫𝄫73849 YIKian
NONE
2171 Alt ♮7𝄫5𝄫♭61925 LUMian
NONE
3133 Melodic ♭4♯6𝄫5963 GACian
NONE
1807 Alt ♮6♯5𝄫342289 Mocrimic
NONE
2951 Neapolitan Major ♯5𝄫3𝄪41145 Zygimic
NONE
3523 Superlydian Augmented ♭2𝄪34573 Saptimic
NONE
3809 Superlydian Augmented 𝄪345♯𝄪2 287 Gynimic
NONE
Scale family 251: Alt 𝄫5𝄫♭6𝄫𝄫7 - Forte class: 7-4
ScaleAntiscaleSuperantimodes
251 Alt 𝄫5𝄫♭6𝄫𝄫73845 YIHian
NONE
2173 Alt ♮27𝄫5𝄫♭61923 LULian
NONE
1567 Alt ♮6𝄫34𝄫♭52529 PIKian
NONE
2831 Alt ♮67♯5𝄫341265 Pynimic
NONE
3463 Phrygian +𝄫3𝄪4633 Kydimic
NONE
3779 Superlydian Augmented ♭2𝄪345 317 Korimic
NONE
3937 Superlydian Augmented 𝄪35♯𝄪24 159 BAMian
NONE
Scale family 253: Alt ♮2𝄫5𝄫♭6𝄫𝄫7 - Forte class: 7-2
ScaleAntiscaleSuperantimodes
253 Alt ♮2𝄫5𝄫♭6𝄫𝄫73843 Hexatonic Chromatic 5
3907 Superlydian Augmented ♭2𝄪35♯𝄪4
1087 Infra-Alt 5♭7𝄫𝄫63009 SUVian
NONE
2591 Alt ♮67𝄫34𝄫♭51505 JEPian
NONE
3343 Phrygian +𝄫34753 Kytrimic
NONE
3719 Phrygian+𝄫3𝄪45377 Kathimic
NONE
3907 Superlydian Augmented ♭2𝄪35♯𝄪4 189 BEFian
253 Alt ♮2𝄫5𝄫♭6𝄫𝄫7
4001 Superlydian Augmented 𝄪5♯𝄪234 95 ARKian
NONE
Scale family 319: Ultra-Alt 6 - Forte class: 7-3
ScaleAntiscaleSuperantimodes
319 Ultra-Alt 63777 YARian
NONE
2207 Alt ♮7𝄫346𝄫♭51889 LOQian
NONE
3151 Alt ♮7♯6𝄫34945 Raga Saravati
1009 Lydian ♭6♯3𝄪2𝄫7
3623 Ionian ♭2♯6𝄫3𝄪5473 Aeralimic
NONE
3859 Ionian ♭2♯6𝄪5♯𝄪4237 BIJian
NONE
3977 Superlydian Augmented 𝄪5♯𝄪34 119 SMOian
NONE
1009 Lydian ♭6♯3𝄪2𝄫73087 Hexatonic Chromatic 3
3151 Alt ♮7♯6𝄫34
Scale family 351: Infra-Alt 567 - Forte class: 7-9
ScaleAntiscaleSuperantimodes
351 Infra-Alt 5673745 XUVian
NONE
2223 Arcadian minor1873 Dathimic
NONE
3159 Alt ♮7♯6𝄫3937 Stothimic
NONE
3627 Neapoitan Major ♯6𝄪5469 Katyrimic
NONE
3861 Ionian ♯6𝄪5♯𝄪4235 BIHian
NONE
1989 Dominant +𝄪342107 MUTian
NONE
1521 Lydian 7♭6♯3𝄪22575 PUMian
NONE
Scale family 367: Infra-Alt 67 - Forte class: 7-Z36
ScaleAntiscaleSuperantimodes
367 Infra-Alt 673729 Starimic
NONE
2231 Arcadian1865 Thagimic
NONE
3163 Alt ♮7♯6933 Dadimic
NONE
3629 Melodic ♯6𝄪5467 Raga Dhavalangam
NONE
1931 Dorian +♭2𝄪42165 NECian
NONE
3013 Ionian +𝄪341083 GOYian
NONE
1777 Lydian 7♯3𝄪22319 ODUian
NONE
Scale family 375: Infra-Alt 67♭4 - Forte class: 7-13
ScaleAntiscaleSuperantimodes
375 Infra-Alt 67♭43721 Phragimic
NONE
2235 Exotic minor1861 Phrygimic
NONE
3165 Alt ♮27♯6931 Raga Kalakanthi
NONE
1815 Alt ♮6♯5𝄫32281 Rathimic
NONE
2955 Neapoitan Major ♯5𝄪41141 Rynimic
NONE
3525 Ionian +♯6𝄪34571 Kynimic
NONE
1905 Lydian 7+♯3𝄪22191 Thydimic
NONE
Scale family 379: Alt 𝄫5𝄫♭67 - Forte class: 7-11
ScaleAntiscaleSuperantimodes
379 Alt 𝄫5𝄫♭673717 XIDian
3781 Ionian ♯6𝄪345
2237 Alt ♮27𝄫561859 LIXian
NONE
1583 Alt ♮6𝄫3452513 Aerycrimic
NONE
2839 Neapolitan Major ♭4♯5𝄫31257 Minor Blues
NONE
3467 Phrygian +𝄪4629 Aeronimic
NONE
3781 Ionian ♯6𝄪345 315 Stodimic
379 Alt 𝄫5𝄫♭67
1969 Dominant +♯3𝄪242127 NAFian
NONE
Scale family 381: Alt ♮2𝄫5𝄫♭67 - Forte class: 7-8
ScaleAntiscaleSuperantimodes
381 Alt ♮2𝄫5𝄫♭673715 XICian
3723 Phrygian +𝄪45
1119 Infra-Alt 56♭72977 SOBian
NONE
2607 Alt ♮67𝄫3451489 Raga Jyoti
2001 Dominant +𝄪234
3351 Alt ♮7♯56𝄫3745 Kolimic
NONE
3723 Phrygian +𝄪45373 Epagimic
381 Alt ♮2𝄫5𝄫♭67
3909 Superlydian Augmented ♮2𝄪35♯𝄪4 187 BEDian
NONE
2001 Dominant +𝄪2342095 MUMian
2607 Alt ♮67𝄫345
Scale family 415: Infra-Alt 57 - Forte class: 7-6
ScaleAntiscaleSuperantimodes
415 Infra-Alt 573681 XAHian
NONE
2255 Alt ♮7𝄫3461841 Thogimic
NONE
3175 Locrian ♮7♯6𝄫3921 Bogimic
NONE
3635 Ionian ♭2♯6𝄪5461 Raga Syamalam
NONE
3865 Ionian ♯26𝄪5♯𝄪4 231 BIFian
NONE
995 Lydian ♭26♯3𝄫73101 TIYian
NONE
2545 Lydian ♭6♯3𝄪21551 JORian
NONE
Scale family 431: Infra-Alt 7 - Forte class: 7-14
ScaleAntiscaleSuperantimodes
431 Infra-Alt 73665 Stalimic
NONE
2263 Phlegmatic minor1833 Ionacrimic
NONE
3179 Locrian ♮7♯6917 Dygimic
NONE
3637 Ionian ♯6𝄪5459 Zaptimic
NONE
1933 Dorian +𝄪42163 NEBian
NONE
1507 Lydian 7♭26♯32589 PUVian
NONE
2801 Lydian ♯3𝄪21295 HUYian
NONE
Scale family 439: Infra-Alt 7♭4 - Forte class: 7-Z38
ScaleAntiscaleSuperantimodes
439 Infra-Alt 7♭43657 Epynimic
NONE
2267 Exotic1829 Pathimic
NONE
3181 Melodic ♭5♯6915 Raga Kalagada
NONE
1819 Alt ♮6♯52277 Kagimic
NONE
2957 Melodic +𝄪41139 Aerygimic
NONE
1763 Lydian 7♭2♯32333 Stynimic
NONE
2929 Lydian +♯3𝄪21167 Aerodimic
NONE
Scale family 443: Alt 𝄫56𝄫♭7 - Forte class: 7-Z37
ScaleAntiscaleSuperantimodes
443 Alt 𝄫56𝄫♭73653 Sathimic
NONE
2269 Nomadic minor1827 Katygimic
1891 Lydian 7+♭2♯3
1591 Alt ♮6𝄫352505 Mydimic
NONE
2843 Neapolitan Major ♭4♯51253 Zolimic
NONE
3469 Melodic +♯6𝄪4627 Mogimic
NONE
1891 Lydian 7+♭2♯32205 Ionocrimic
2269 Nomadic minor
2993 Ionian +♯3𝄪241103 Lynimic
NONE
Scale family 445: Alt ♮2𝄫56𝄫♭7 - Forte class: 7-11
ScaleAntiscaleSuperantimodes
445 Alt ♮2𝄫56𝄫♭73651 WUQian
NONE
1135 Alt 𝄫345𝄫♭62961 Bygimic
3025 Ionian +𝄪234
2615 Alt ♮67𝄫351481 Zagimic
NONE
3355 Phrygian +♭4741 Gathimic
NONE
3725 Melodic ♯6𝄪45 371 Rythimic
NONE
1955 Dominant +♭2♯3𝄪42141 NANian
NONE
3025 Ionian +𝄪2341071 GORian
1135 Alt 𝄫345𝄫♭6
Scale family 463: Infra-Alt 7♭5 - Forte class: 7-7
ScaleAntiscaleSuperantimodes
463 Infra-Alt 7♭53633 Daptimic
3641 Ionian ♯26𝄪5
2279 Apathetic minor1817 Phrythimic
NONE
3187 Ionian ♭25♯6909 Katarimic
NONE
3641 Ionian ♯26𝄪5 455 Messiaen Mode 5 Rotation 2
967 Mela Salaga
463 Infra-Alt 7♭5
967 Mela Salaga3129 TOQian
3641 Ionian ♯26𝄪5
2531 Lydian ♭26♯31565 JOZian
NONE
3313 Lydian ♯36𝄪2783 ETUian
NONE
Scale family 471: Alt 𝄫36𝄫♭7 - Forte class: 7-15
ScaleAntiscaleSuperantimodes
471 Alt 𝄫36𝄫♭73625 Podimic
NONE
2283 Pacific minor1813 Katothimic
1821 Dorian +♭4
3189 Ionian ♭5♯6907 Tholimic
NONE
1821 Dorian +♭42275 Messiaen Mode 5
2787 Lydian ♭2♯3
2283 Pacific minor
1479 Phrygian ♯4𝄫32617 Pylimic
NONE
2787 Lydian ♭2♯31309 Pogimic
1821 Dorian +♭4
3441 Superlydian Augmented 𝄪2655 Kataptimic
NONE
Scale family 475: Alt 𝄫6𝄫♭7 - Forte class: 7-Z38
ScaleAntiscaleSuperantimodes
475 Alt 𝄫6𝄫♭73621 Gylimic
NONE
2285 Supine1811 Kyptimic
NONE
1595 Alt ♮6𝄫52501 Ralimic
NONE
2845 Melodic +♭41251 Sylimic
NONE
1735 Lydian 7♭2𝄫32361 Docrimic
NONE
2915 Lydian +♭2♯31181 Katagimic
NONE
3505 Superlydian Augmented 𝄪24 591 Gaptimic
NONE
Scale family 477: Alt ♮2𝄫6𝄫♭7 - Forte class: 7-13
ScaleAntiscaleSuperantimodes
477 Alt ♮2𝄫6𝄫♭73619 Thanimic
NONE
1143 Alt 𝄫35𝄫♭62953 Ionylimic
NONE
2619 Alt ♮67𝄫51477 Raga Jaganmohanam
NONE
3357 Melodic +♯6♭4739 Rorimic
NONE
1863 Lydian 7+♭2𝄫32233 Donimic
NONE
2979 Ionian +♭2♯3𝄪41117 Raptimic
NONE
3537 Superlydian Augmented 𝄪234559 Lylimic
NONE
Scale family 487: Locrian 𝄫36𝄫♭7 - Forte class: 7-7
ScaleAntiscaleSuperantimodes
487 Locrian 𝄫36𝄫♭73609 WOQian
NONE
2291 Pacific1805 LAQian
NONE
3193 Ionian ♭5♯26903 FOSian
911 Phrygian 𝄫347
911 Phrygian 𝄫3473185 Messiaen Mode 5 Rotation 1
3697 Superlydian Augmented 𝄪25
3193 Ionian ♭5♯26
2503 Lydian ♭26𝄫31593 Zogimic
NONE
3299 Lydian ♭2♯36797 Katocrimic
NONE
3697 Superlydian Augmented 𝄪25 399 Zynimic
911 Phrygian 𝄫347
Scale family 491: Locrian 𝄫6𝄫♭7 - Forte class: 7-14
ScaleAntiscaleSuperantimodes
491 Locrian 𝄫6𝄫♭73605 OLKian
NONE
2293 Bucolic1803 LAPian
NONE
1597 Dorian ♭4𝄫52499 PIRian
NONE
1423 Alt ♮5𝄫342673 Mythimic
NONE
2759 Lydian ♭2𝄫31337 Epogimic
NONE
3427 Phrygian +♯3669 Major Blues
NONE
3761 Raga Madhuri 335 Zanimic
NONE
Scale family 493: Locrian ♮2𝄫6𝄫♭7 - Forte class: 7-Z36
ScaleAntiscaleSuperantimodes
493 Locrian ♮2𝄫6𝄫♭73603 WOMian
NONE
1147 Alt 𝄫5𝄫♭62949 SIKian
NONE
2621 Euphoric1475 UFFian
NONE
1679 Dorian ♭2𝄫342417 Kanimic
NONE
2887 Neapolitan Major ♯45𝄫31209 Raga Bhanumanjari
NONE
3491 Superlydian Augmented ♭2𝄪4 605 Dycrimic
NONE
3793 Superlydian Augmented 𝄪2345 303 Golimic
NONE
Scale family 499: Major Locrian ♭2𝄫6𝄫♭7 - Forte class: 7-6
ScaleAntiscaleSuperantimodes
499 Major Locrian ♭2𝄫6𝄫♭73597 WIJian
NONE
2297 Ionian ♭5♯2𝄫61799 LAMian
NONE
799 Infra-Alt 5♭63297 ULLian
NONE
2447 Alt ♮57𝄫341649 Bolimic
NONE
3271 Mela Raghupriya825 Thyptimic
NONE
3683 Phrygian +♯3𝄪5413 Ganimic
NONE
3889 Superlydian Augmented 𝄪25♯𝄪4 207 BEQian
NONE
Scale family 501: Major Locrian 𝄫6𝄫♭7 - Forte class: 7-9
ScaleAntiscaleSuperantimodes
501 Major Locrian 𝄫6𝄫♭73595 WIHian
NONE
1149 Alt ♮2𝄫5𝄫♭62947 SIJian
NONE
1311 Alt 𝄫34𝄫♭52785 RONian
NONE
2703 Erratic minor1393 Mycrimic
NONE
3399 Phrygian +𝄫3697 Lagimic
NONE
3747 Superlydian Augmented ♭2𝄪45 349 Borimic
NONE
3921 Superlydian Augmented 𝄪235♯𝄪4 175 BEWian
NONE
Scale family 505: Major Locrian ♯2𝄫6𝄫♭7 - Forte class: 7-3
ScaleAntiscaleSuperantimodes
505 Major Locrian ♯2𝄫6𝄫♭73591 WIFian
3655 Phrygian +𝄪5𝄫3
575 Infra-Alt 5𝄫𝄫63521 WANian
NONE
2335 Byzantine1761 KUQian
NONE
3215 Neapoitan Major ♯6𝄫34881 Aerothimic
NONE
3655 Phrygian +𝄪5𝄫3441 Thycrimic
505 Major Locrian ♯2𝄫6𝄫♭7
3875 Superlydian Augmented ♭2𝄪5♯𝄪4221 BIYian
NONE
3985 Superlydian Augmented 𝄪25♯𝄪34 111 AROian
NONE
Scale family 607: Infra-Alt 56 - Forte class: 7-10
ScaleAntiscaleSuperantimodes
607 Infra-Alt 563489 VUVian
NONE
2351 Alt ♮7𝄫3451745 Raga Vutari
NONE
3223 Alt ♮57♯6𝄫3873 Bagimic
NONE
3659 Phrygian +𝄪5437 Ronimic
NONE
3877 Ionian ♯36𝄪5♯𝄪4 219 Istrian
NONE
1993 Dominant +♯2𝄪342103 MURian
NONE
761 Major Locrian ♯2𝄫673335 VADian
NONE
Scale family 623: Infra-Alt 6 - Forte class: 7-16
ScaleAntiscaleSuperantimodes
623 Infra-Alt 63473 Lathimic
NONE
2359 Unorthodox minor1737 Raga Madhukauns
NONE
3227 Neapoitan Major ♭4♯6869 Kothimic
NONE
3661 Melodic ♯46𝄪5435 Raga Purna Pancama
NONE
1939 Dominant +♭2𝄪42157 NEXian
NONE
3017 Ionian +♯2𝄪341079 GOWian
NONE
889 Major Locrian ♯2𝄫73207 UCOian
NONE
Scale family 631: Infra-Alt 6♭4 - Forte class: 7-Z17
ScaleAntiscaleSuperantimodes
631 Infra-Alt 6♭43465 Katathimic
3529 Superlydian Augmented 𝄪34
2363 Unorthodox1733 Raga Sarasvati
NONE
3229 Melodic ♯6♭4867 Phrocrimic
NONE
1831 Dominant +♭2𝄫32265 Raga Rasamanjari
NONE
2963 Ionian +♭2𝄪41133 Stycrimic
NONE
3529 Superlydian Augmented 𝄪34567 Aeoladimic
631 Infra-Alt 6♭4
953 Mela Yagapriya3143 Polimic
NONE
Scale family 635: Alt 𝄫57𝄫♭6 - Forte class: 7-16
ScaleAntiscaleSuperantimodes
635 Alt 𝄫57𝄫♭63461 VODian
NONE
2365 Alt ♮27𝄫51731 KOXian
NONE
1615 Alt ♮6𝄫342481 Raga Paraju
NONE
2855 Ionian +♭2𝄫31241 Pygimic
NONE
3475 Enigmatic 𝄪4621 Pyramid Hexatonic
NONE
3785 Superlydian Augmented 𝄪345 311 Stagimic
NONE
985 Mela Sucaritra3111 TIFian
NONE
Scale family 637: Debussy's Heptatonic - Forte class: 7-10
ScaleAntiscaleSuperantimodes
637 Debussy's Heptatonic3459 VOCian
NONE
1183 Infra-Alt 5♭72913 SENian
NONE
2639 Alt ♮67𝄫341457 Raga Kamalamanohari
NONE
3367 Neapolitan Major ♯56𝄫3729 Stygimic
NONE
3731 Phrygian +♮3𝄪45 365 Marimic
NONE
3913 Bonian 183 BEBian
NONE
1001 Lydian ♯23♭6𝄫73095 TIVian
NONE
Scale family 671: Infra-Alt 5 - Forte class: 7-Z12
ScaleAntiscaleSuperantimodes
671 Infra-Alt 53425 VIHian
NONE
2383 Alt ♮7𝄫341713 Raga Khamas
NONE
3239 Ionian ♭2♯6𝄫3857 Aeolydimic
NONE
3667 Lydian ♭2♯6𝄪5429 Koptimic
NONE
3881 Superlydian Augmented 𝄪5♯𝄪4 215 BIVian
NONE
997 Lydian ♭6♯3𝄫73099 TIXian
NONE
1273 Dominant ♭5♯2𝄫62823 RULian
NONE
Scale family 687: Alt 𝄫34567 - Forte class: 7-24
ScaleAntiscaleSuperantimodes
687 Alt 𝄫345673409 Katanimic
NONE
2391 Phlegmatic1705 Raga Manohari
NONE
3243 Neapoitan Major ♯6853 Epothimic
NONE
3669 Lydian ♯6𝄪5 427 Raga Suddha Simantini
NONE
1941 Dominant +𝄪42155 NEWian
NONE
1509 Lydian minor ♯32587 PUTian
NONE
1401 Major Locrian ♯22695 RAKian
NONE
Scale family 695: Alt 𝄫3567 - Forte class: 7-27
ScaleAntiscaleSuperantimodes
695 Alt 𝄫35673401 Palimic
NONE
2395 Alt ♮71701 Mixolydian Hexatonic
1765 Lydian 7♯3
3245 Melodic ♯6851 Raga Hejjajji
NONE
1835 Dorian +♭22261 Raga Caturangini
NONE
2965 Ionian +𝄪41131 Honchoshi Plagal Form
NONE
1765 Lydian 7♯32331 Dylimic
2395 Alt ♮7
1465 Dominant ♭6♯22631 Macrimic
NONE
Scale family 699: Alt 𝄫567 - Forte class: 7-26
ScaleAntiscaleSuperantimodes
699 Alt 𝄫5673397 Sydimic
NONE
2397 Eccentric1699 Raga Rasavali
NONE
1623 Alt ♮6𝄫32473 Raga Takka
NONE
2859 Neapolitan Major ♯51237 Salimic
NONE
3477 Ionian +♯6𝄪4 619 Hexatonic Double Phrygian
NONE
1893 Lydian 7+♯32203 Dorimic
NONE
1497 Mela Jyotisvarupini2599 Malimic
NONE
Scale family 701: Alt ♮2𝄫567 - Forte class: 7-23
ScaleAntiscaleSuperantimodes
701 Alt ♮2𝄫5673395 VEPian
NONE
1199 Alt 𝄫34562897 Rycrimic
NONE
2647 Bohemian1449 Raga Gopikavasantam
1513 Lydian 7♭6♯23
3371 Neapoitan Major ♯56725 Raga Yamuna Kalyani
NONE
3733 Ionian ♯6𝄪45 363 Soptimic
NONE
1957 Dominant +♯3𝄪42139 NAMian
NONE
1513 Lydian 7♭6♯232583 PURian
2647 Bohemian
Scale family 719: Alt 𝄫3467 - Forte class: 7-19
ScaleAntiscaleSuperantimodes
719 Alt 𝄫34673377 Phralimic
NONE
2407 Apathetic1689 Lorimic
NONE
3251 Mela Hatakambari845 Raga Neelangi
NONE
3673 Lydian ♯26𝄪5 423 Sogimic
NONE
971 Mela Gavambodhi3125 TONian
NONE
2533 Lydian ♯3♭61563 JOYian
NONE
1657 Dominant ♭5♯22439 PAGian
NONE
Scale family 727: Alt 𝄫367 - Forte class: 7-29
ScaleAntiscaleSuperantimodes
727 Alt 𝄫3673369 Mixolimic
NONE
2411 Locrian ♮71685 Zeracrimic
NONE
3253 Mela Naganandini843 Molimic
NONE
1837 Dorian +2259 Raga Mandari
NONE
1483 Phrygian ♯42613 Raga Hamsa Vinodini
NONE
2789 Lydian ♯31307 Katorimic
NONE
1721 Dominant ♯22375 Aeolaptimic
NONE
Scale family 731: Alternating Heptamode - Forte class: 7-31
ScaleAntiscaleSuperantimodes
731 Alternating Heptamode3365 Katolimic
NONE
2413 Harmonic Minor ♭51683 Raga Malayamarutam
NONE
1627 Alt ♮62469 Raga Bhinna Pancama
NONE
2861 Melodic +1235 Tritone Scale
NONE
1739 Dorian ♭2♯42357 Raga Sarasanana
NONE
2917 Nohkan Flute Scale1179 Sonimic
NONE
1753 Hungarian Major2343 Tharimic
NONE
Scale family 733: Alt ♮2𝄫67 - Forte class: 7-25
ScaleAntiscaleSuperantimodes
733 Alt ♮2𝄫673363 Rogimic
NONE
1207 Alt 𝄫3562889 Thoptimic
NONE
2651 Dysphoric1445 Raga Navamanohari
NONE
3373 Melodic +♯6 723 Ionadimic
NONE
1867 Lydian 7+♭232229 Raga Nalinakanti
NONE
2981 Ionian +♯3𝄪41115 Superlocrian Hexamirror
NONE
1769 Lydian 7♯232327 Epalimic
NONE
Scale family 743: Chromatic Hypophrygian Inverse - Forte class: 7-20
ScaleAntiscaleSuperantimodes
743 Chromatic Hypophrygian Inverse3353 Phraptimic
NONE
2419 Raga Lalita1677 Raga Manavi
NONE
3257 Mela Calanata839 Ionathimic
NONE
919 Alt ♮5𝄫373177 Rothimic
NONE
2507 Neapoitan Minor ♯41589 Raga Rageshri
NONE
3301 Lydian ♯36795 Aeologimic
NONE
1849 Chromatic Hypodorian Inverse2247 Raga Vijayasri
NONE
Scale family 747: Locrian 𝄫67 - Forte class: 7-28
ScaleAntiscaleSuperantimodes
747 Locrian 𝄫673349 Aeolocrimic
NONE
2421 Harmonic Major ♭51675 Raga Salagavarali
NONE
1629 Synian2467 Raga Padi
NONE
1431 Phragian2665 Messiaen Mode 2 Truncation 1
NONE
2763 Neapolitan Major ♯41333 Lyptimic
NONE
3429 Lydian +♯36 667 Rodimic
NONE
1881 Lydian 7+♯22215 Ranimic
NONE
Scale family 749: Locrian ♮2𝄫67 - Forte class: 7-25
ScaleAntiscaleSuperantimodes
749 Locrian ♮2𝄫673347 Synimic
NONE
1211 Ceiling Scale2885 Byrimic
NONE
2653 Nomadic1443 Raga Phenadyuti
NONE
1687 Dorian ♭24𝄫32409 Zacrimic
NONE
2891 Lydian +♭231205 Raga Siva Kambhoji
NONE
3493 Ionian +♯36𝄪4 603 Aeolygimic
NONE
1897 Lydian 7+♯232199 Dyptimic
NONE
Scale family 755: Ionian ♭25𝄫67 - Forte class: 7-Z18
ScaleAntiscaleSuperantimodes
755 Ionian ♭25𝄫673341 VAHian
NONE
2425 Harm. Maj ♭5♯21671 KEMian
NONE
815 Alt 𝄫34573281 Raga Vijayavasanta
NONE
2455 Bohemian minor1641 Bocrimic
NONE
3275 Mela Divyamani821 Aeranimic
NONE
3685 Lydian ♯36𝄪5 411 Lygimic
NONE
1945 Dominant +♯2𝄪42151 NATian
NONE
Scale family 757: Major Locrian 𝄫67 - Forte class: 7-23
ScaleAntiscaleSuperantimodes
757 Major Locrian 𝄫673339 SMUian
3403 Phrygian +
1213 Alt ♮2𝄫562883 SAVian
NONE
1327 Alt 𝄫3452769 Dyrimic
NONE
2711 Erratic1385 Phracrimic
NONE
3403 Phrygian + 693 Arezzo Major Diatonic Hexachord
757 Major Locrian 𝄫67
3749 Raga Sorati 347 Barimic
NONE
1961 Dominant +♯23𝄪42135 NAKian
NONE
Scale family 823: Alt 𝄫357 - Forte class: 7-21
ScaleAntiscaleSuperantimodes
823 Alt 𝄫3573273 Raga Jivantini
3277 Lydian ♭3♯6
2459 Neapoitan Minor ♭41637 Syptimic
NONE
3277 Lydian ♭3♯6 819 Augmented Inverse
1843 Dominant +♭2
883 Locrian ♮3𝄫7
823 Alt 𝄫357
1843 Dominant +♭22253 Raga Amarasenapriya
3277 Lydian ♭3♯6
2969 Ionian +♯2𝄪41127 Eparimic
NONE
883 Locrian ♮3𝄫73213 Eponimic
3277 Lydian ♭3♯6
2489 Ionian ♯2♭61607 Epytimic
NONE
Scale family 827: Alt 𝄫57 - Forte class: 7-21
ScaleAntiscaleSuperantimodes
827 Alt 𝄫573269 Raga Malarani
NONE
2461 Harmonic minor ♭41635 Sygimic
1639 Locrian ♮6𝄫3
1639 Locrian ♮6𝄫32457 Augmented
3481 Ionian +♯26𝄪4
2521 Mela Dhatuvardhani
2461 Harmonic minor ♭4
2867 Ionian +♭21229 Raga Simharava
NONE
3481 Ionian +♯26𝄪4 615 Schoenberg Hexachord
1639 Locrian ♮6𝄫3
947 Mela Gayakapriya3149 Phrycrimic
NONE
2521 Mela Dhatuvardhani1575 Zycrimic
1639 Locrian ♮6𝄫3
Scale family 829: Alt ♮2𝄫57 - Forte class: 7-Z18
ScaleAntiscaleSuperantimodes
829 Alt ♮2𝄫573267 URFian
NONE
1231 Alt 𝄫3462865 Solimic
NONE
2663 Supine minor1433 Dynimic
NONE
3379 Verdi's Scala Enigmatica Descending 717 Raga Vijayanagari
NONE
3737 Ionian ♯26𝄪45 359 Bothimic
NONE
979 Mela Dhavalambari3117 TIJian
NONE
2537 Lydian ♭6♯231559 JOWian
NONE
Scale family 847: Alt 𝄫347 - Forte class: 7-19
ScaleAntiscaleSuperantimodes
847 Alt 𝄫3473249 Raga Tilang
NONE
2471 Neapolitan minor 𝄫31625 Hungarian Major No5
NONE
3283 Mela Visvambhari813 Larimic
NONE
3689 Superlydian Augmented 𝄪5 407 All-Trichord Hexachord
NONE
973 Mela Syamalangi3123 TOMian
NONE
1267 Locrian ♮3𝄫62829 RUPian
NONE
2681 Ionian ♭5♯21415 IMPian
NONE
Scale family 855: Alt 𝄫37 - Forte class: 7-30
ScaleAntiscaleSuperantimodes
855 Alt 𝄫373241 Dalimic
NONE
2475 Neapolitan Minor1621 Scriabin's Prometheus
NONE
3285 Lydian #6811 Radimic
NONE
1845 Mixolydian Augmented2251 Zodimic
NONE
1485 Aeolian ♯42611 Raga Vasanta
NONE
1395 Locrian Dominant2701 Hawaiian
NONE
2745 Ionian ♯21351 Aeraptimic
NONE
Scale family 859: Alt 𝄫7 - Forte class: 7-32
ScaleAntiscaleSuperantimodes
859 Alt 𝄫73237 Raga Brindabani Sarang
NONE
2477 Harmonic Minor1619 Prometheus Neapolitan
NONE
1643 Locrian ♮62453 Raga Latika
NONE
2869 Major Augmented1227 Thacrimic
NONE
1741 Dorian ♯42355 Raga Lalita
NONE
1459 Phrygian Dominant2637 Raga Ranjani
NONE
2777 Aeolian Harmonic1319 Phronimic
NONE
Scale family 861: Alt ♮2𝄫7 - Forte class: 7-28
ScaleAntiscaleSuperantimodes
861 Alt ♮2𝄫73235 Pothimic
NONE
1239 Alt 𝄫362857 Stythimic
NONE
2667 Neapolitan Major ♭51429 Bythimic
NONE
3381 Ionian +♯6 715 T4 Prime Mode
NONE
1869 Lydian 7+♭32227 Raga Gaula
NONE
1491 Lydian minor ♭22605 Rylimic
NONE
2793 Lydian ♯231303 Epolimic
NONE
Scale family 871: Hungarian Romani Minor 4th Mode - Forte class: 7-22
ScaleAntiscaleSuperantimodes
871 Hungarian Romani Minor 4th Mode3225 Ionalimic
3289 Lydian ♯26
2483 Double Harmonic1613 Thylimic
NONE
3289 Lydian ♯26807 Raga Suddha Mukhari
871 Hungarian Romani Minor 4th Mode
923 Alt ♮5𝄫73173 Zarimic
NONE
2509 Double Harmonic Minor1587 Raga Rudra Pancama
1651 Asian
1651 Asian2445 Zadimic
2509 Double Harmonic Minor
2873 Ionian Augmented ♯21223 Phryptimic
NONE
Scale family 875: Locrian 𝄫7 - Forte class: 7-32
ScaleAntiscaleSuperantimodes
875 Locrian 𝄫73221 Bycrimic
NONE
2485 Harmonic Major1611 Dacrimic
NONE
1645 Dorian ♭52451 Raga Bauli
NONE
1435 Phrygian ♭42661 Stydimic
NONE
2765 Lydian ♭31331 Raga Vasantabhairavi
NONE
1715 Dominant ♭22381 Takemitsu Linea Mode 1
NONE
2905 Lydian Augmented ♯21191 Pyrimic
NONE
Scale family 877: Locrian ♮2𝄫7 - Forte class: 7-31
ScaleAntiscaleSuperantimodes
877 Locrian ♮2𝄫73219 Ionaphimic
NONE
1243 Alt 𝄫62853 Baptimic
NONE
2669 Melodic ♭51427 Lolimic
NONE
1691 Dorian ♭242405 T4 First Rotation
NONE
2893 Lydian +♭31203 Pagimic
NONE
1747 Lydian 7♭22349 Raga Ghantana
NONE
2921 Lydian +♯231175 Epycrimic
NONE
Scale family 885: Major Locrian 𝄫7 - Forte class: 7-26
ScaleAntiscaleSuperantimodes
885 Major Locrian 𝄫73211 Epacrimic
NONE
1245 Alt ♮2𝄫62851 Katoptimic
NONE
1335 Elephant Scale2761 Dagimic
NONE
2715 Neapolitan Major ♭41381 Padimic
NONE
3405 Phrygian +♮2 691 Raga Kalavati
NONE
1875 Lydian 7+♭22221 Raga Sindhura Kafi
NONE
2985 Ionian +♯23𝄪41111 Sycrimic
NONE
Scale family 925: Alt ♮25𝄫7 - Forte class: 7-20
ScaleAntiscaleSuperantimodes
925 Alt ♮25𝄫73171 Zythimic
NONE
1255 Locrian 𝄫362841 African Pentatonic 3
NONE
2675 Persian ♮61421 Raga Trimurti
NONE
3385 Chromatic Phrygian711 Raga Chandrajyoti
NONE
935 Locrian ♮5𝄫373161 Kodimic
NONE
2515 Chromatic Hypolydian1581 Raga Bagesri
NONE
3305 Lydian ♯236791 Aeoloptimic
NONE
Scale family 939: Phrygian 𝄫7 - Forte class: 7-30
ScaleAntiscaleSuperantimodes
939 Phrygian 𝄫73157 Zyptimic
NONE
2517 Harm. Major ♯41579 Sagimic
NONE
1653 Dominant ♭52443 Panimic
NONE
1437 Sabach ascending2659 Katynimic
NONE
1383 Locrian 𝄫32713 Porimic
NONE
2739 Ionian ♭21357 Takemitsu Linea Mode 2
NONE
3417 Lydian +♯26 679 Lanimic
NONE
Scale family 941: Aeolian 𝄫7 - Forte class: 7-29
ScaleAntiscaleSuperantimodes
941 Aeolian 𝄫73155 Ladimic
NONE
1259 Locrian 𝄫62837 Aelothimic
NONE
2677 Ionian ♭51419 Raga Kashyapi
NONE
1693 Dorian ♭42403 Lycrimic
NONE
1447 Mela Ratnangi2649 Aeolythimic
NONE
2771 Lydian ♭21325 Phradimic
NONE
3433 Super Lydian Augmented 663 Phrynimic
NONE
Scale family 949: Mela Mararanjani - Forte class: 7-27
ScaleAntiscaleSuperantimodes
949 Mela Mararanjani3147 Ryrimic
NONE
1261 Aeolian ♭5𝄫62835 Ionygimic
2899 Lydian +♭2
1339 Alt 𝄫52757 Raga Nishadi
NONE
2717 Melodic ♭41379 Kycrimic
NONE
1703 Mela Vanaspati2393 Zathimic
NONE
2899 Lydian +♭21197 Minor Hexatonic
1261 Aeolian ♭5𝄫6
3497 Superlydian Augmented 𝄪4 599 Thyrimic
NONE
Scale family 981: Mela Kantamani - Forte class: 7-24
ScaleAntiscaleSuperantimodes
981 Mela Kantamani3115 TIHian
NONE
1269 Major Locrian 𝄫62827 RUNian
NONE
1341 Alt ♮2𝄫52755 RIVian
NONE
1359 Alt 𝄫342737 Raga Hari Nata
NONE
2727 Neapolitan Major 𝄫31369 Boptimic
NONE
3411 Enigmatic 685 Raga Suddha Bangala
NONE
3753 Superlydian Augmented 𝄪45 343 Ionorimic
NONE
Scale family 1367: Leading Whole-Tone Inverse - Forte class: 7-33
ScaleAntiscaleSuperantimodes
1367 Leading Whole-Tone Inverse2729 Aeragimic
2731 Neapolitan Major
2731 Neapolitan Major 1365 Whole Tone
3413 Lydian +♯6
1877 Lydian 7+
1493 Lydian Minor
1397 Major Locrian
1373 Alt ♮2
1367 Leading Whole-Tone Inverse
3413 Lydian +♯6 683 Stogimic
2731 Neapolitan Major
1877 Lydian 7+2219 Phrydimic
2731 Neapolitan Major
1493 Lydian Minor2603 Gadimic
2731 Neapolitan Major
1397 Major Locrian2699 Sythimic
2731 Neapolitan Major
1373 Alt ♮22723 Raga Jivantika
2731 Neapolitan Major
Scale family 1371: Superlocrian - Forte class: 7-34
ScaleAntiscaleSuperantimodes
1371 Superlocrian2725 Raga Nagagandhari
2733 Melodic Minor Ascending
2733 Melodic Minor Ascending1363 Gygimic
1371 Superlocrian
1707 Dorian ♭22389 Eskimo Hexatonic 2
2901 Lydian Augmented
2901 Lydian Augmented1195 Raga Gandharavam
1707 Dorian ♭2
1749 Acoustic2347 Raga Viyogavarali
NONE
1461 Major-Minor2635 Gocrimic
NONE
1389 Minor Locrian2707 Banimic
NONE
Scale family 1387: Locrian - Forte class: 7-35
ScaleAntiscaleSuperantimodes
1387 Locrian2709 Raga Kumud
2741 Major
2773 Lydian
2741 Major1355 Aeolorimic
1387 Locrian
1709 Dorian2387 Paptimic
NONE
1451 Phrygian2645 Raga Mruganandana
2773 Lydian
2773 Lydian1323 Ritsu
1387 Locrian
1451 Phrygian
1717 Mixolydian2379 Raga Gurjari Todi
NONE
1453 Aeolian2643 Raga Hamsanandi
NONE