The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 1111: "Sycrimic"

Scale 1111: Sycrimic, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Common Names

Zeitler
Sycrimic
Dozenal
Guqian

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

6 (hexatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,1,2,4,6,10}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

6-21

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 3397

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

2 (dihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

1 (uncohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

5

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

5

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

no
prime: 349

Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[1, 1, 2, 2, 4, 2]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<2, 4, 2, 4, 1, 2>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

pm4n2s4d2t2

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,2,4}
<2> = {2,3,4,6}
<3> = {4,5,7,8}
<4> = {6,8,9,10}
<5> = {8,10,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

3

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

2.232

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.767

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(18, 20, 61)

Common Triads

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

* Pitches are shown with C as the root

Triad TypeTriad*Pitch ClassesDegreeEccentricityCloseness Centrality
Major TriadsF♯{6,10,1}210.67
Augmented TriadsD+{2,6,10}121
Diminished Triadsa♯°{10,1,4}121

The following pitch classes are not present in any of the common triads: {0}

Parsimonious Voice Leading Between Common Triads of Scale 1111. Created by Ian Ring ©2019 D+ D+ F# F# D+->F# a#° a#° F#->a#°

Above is a graph showing opportunities for parsimonious voice leading between triads*. Each line connects two triads that have two common tones, while the third tone changes by one generic scale step.

Diameter2
Radius1
Self-Centeredno
Central VerticesF♯
Peripheral VerticesD+, a♯°

Modes

Modes are the rotational transformation of this scale. Scale 1111 can be rotated to make 5 other scales. The 1st mode is itself.

2nd mode:
Scale 2603
Scale 2603: Gadimic, Ian Ring Music TheoryGadimic
3rd mode:
Scale 3349
Scale 3349: Aeolocrimic, Ian Ring Music TheoryAeolocrimic
4th mode:
Scale 1861
Scale 1861: Phrygimic, Ian Ring Music TheoryPhrygimic
5th mode:
Scale 1489
Scale 1489: Raga Jyoti, Ian Ring Music TheoryRaga Jyoti
6th mode:
Scale 349
Scale 349: Borimic, Ian Ring Music TheoryBorimicThis is the prime mode

Prime

The prime form of this scale is Scale 349

Scale 349Scale 349: Borimic, Ian Ring Music TheoryBorimic

Complement

The hexatonic modal family [1111, 2603, 3349, 1861, 1489, 349] (Forte: 6-21) is the complement of the hexatonic modal family [349, 1111, 1489, 1861, 2603, 3349] (Forte: 6-21)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 1111 is 3397

Scale 3397Scale 3397: Sydimic, Ian Ring Music TheorySydimic

Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 1111 is chiral, and its enantiomorph is scale 3397

Scale 3397Scale 3397: Sydimic, Ian Ring Music TheorySydimic

Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 1111       T0I <11,0> 3397
T1 <1,1> 2222      T1I <11,1> 2699
T2 <1,2> 349      T2I <11,2> 1303
T3 <1,3> 698      T3I <11,3> 2606
T4 <1,4> 1396      T4I <11,4> 1117
T5 <1,5> 2792      T5I <11,5> 2234
T6 <1,6> 1489      T6I <11,6> 373
T7 <1,7> 2978      T7I <11,7> 746
T8 <1,8> 1861      T8I <11,8> 1492
T9 <1,9> 3722      T9I <11,9> 2984
T10 <1,10> 3349      T10I <11,10> 1873
T11 <1,11> 2603      T11I <11,11> 3746
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 1381      T0MI <7,0> 1237
T1M <5,1> 2762      T1MI <7,1> 2474
T2M <5,2> 1429      T2MI <7,2> 853
T3M <5,3> 2858      T3MI <7,3> 1706
T4M <5,4> 1621      T4MI <7,4> 3412
T5M <5,5> 3242      T5MI <7,5> 2729
T6M <5,6> 2389      T6MI <7,6> 1363
T7M <5,7> 683      T7MI <7,7> 2726
T8M <5,8> 1366      T8MI <7,8> 1357
T9M <5,9> 2732      T9MI <7,9> 2714
T10M <5,10> 1369      T10MI <7,10> 1333
T11M <5,11> 2738      T11MI <7,11> 2666

The transformations that map this set to itself are: T0

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 1109Scale 1109: Kataditonic, Ian Ring Music TheoryKataditonic
Scale 1107Scale 1107: Mogitonic, Ian Ring Music TheoryMogitonic
Scale 1115Scale 1115: Superlocrian Hexamirror, Ian Ring Music TheorySuperlocrian Hexamirror
Scale 1119Scale 1119: Rarian, Ian Ring Music TheoryRarian
Scale 1095Scale 1095: Phrythitonic, Ian Ring Music TheoryPhrythitonic
Scale 1103Scale 1103: Lynimic, Ian Ring Music TheoryLynimic
Scale 1127Scale 1127: Eparimic, Ian Ring Music TheoryEparimic
Scale 1143Scale 1143: Styrian, Ian Ring Music TheoryStyrian
Scale 1047Scale 1047: Gician, Ian Ring Music TheoryGician
Scale 1079Scale 1079: Gowian, Ian Ring Music TheoryGowian
Scale 1175Scale 1175: Epycrimic, Ian Ring Music TheoryEpycrimic
Scale 1239Scale 1239: Epaptian, Ian Ring Music TheoryEpaptian
Scale 1367Scale 1367: Leading Whole-Tone Inverse, Ian Ring Music TheoryLeading Whole-Tone Inverse
Scale 1623Scale 1623: Lothian, Ian Ring Music TheoryLothian
Scale 87Scale 87: Asrian, Ian Ring Music TheoryAsrian
Scale 599Scale 599: Thyrimic, Ian Ring Music TheoryThyrimic
Scale 2135Scale 2135: Nakian, Ian Ring Music TheoryNakian
Scale 3159Scale 3159: Stocrian, Ian Ring Music TheoryStocrian

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.