The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 2619: "Alt 675"

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Bedwell
Alt 675
Dysphoric minor
Zeitler
Ionyrian
Dozenal
QEMian

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

7 (heptatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,1,3,4,5,9,11}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

7-13

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 2955

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

4 (multihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

2 (dicohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

4

Modes

Modes are the rotational transformations of this scale. This number includes the scale itself, so the number is usually the same as its cardinality; unless there are rotational symmetries then there are fewer modes.

7

Prime Form

Describes if this scale is in prime form, using the Starr/Rahn algorithm.

no
prime: 375

Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

Deep Scale

A deep scale is one where the interval vector has 6 different digits, an indicator of maximum hierarchization.

no

Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[1, 2, 1, 1, 4, 2, 1]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<4, 4, 3, 5, 3, 2>

Proportional Saturation Vector

First described by Michael Buchler (2001), this is a vector showing the prominence of intervals relative to the maximum and minimum possible for the scale's cardinality. A saturation of 0 means the interval is present minimally, a saturation of 1 means it is the maximum possible.

<0.5, 0.5, 0.25, 0.667, 0.25, 0.5>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p3m5n3s4d4t2

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,2,4}
<2> = {2,3,5,6}
<3> = {4,6,7}
<4> = {5,6,8}
<5> = {6,7,9,10}
<6> = {8,10,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

2.857

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

2.299

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.803

Myhill Property

A scale has Myhill Property if the Distribution Spectra have exactly two specific intervals for every generic interval.

no

Centre of Gravity Distance

When tones of a scale are imagined as physical objects of equal weight arranged around a unit circle, this is the distance from the center of the circle to the center of gravity for all the tones. A perfectly balanced scale has a CoG distance of zero.

0.275978

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(38, 26, 90)

Coherence Quotient

The Coherence Quotient is a score between 0 and 1, indicating the proportion of coherence failures (ambiguity or contradiction) in the scale, against the maximum possible for a cardinality. A high coherence quotient indicates a less complex scale, whereas a quotient of 0 indicates a maximally complex scale.

0.543

Sameness Quotient

The Sameness Quotient is a score between 0 and 1, indicating the proportion of differences in the heteromorphic profile, against the maximum possible for a cardinality. A higher quotient indicates a less complex scale, whereas a quotient of 0 indicates a scale with maximum complexity.

0.286

Tertian Harmonic Chords

Tertian chords are made from alternating members of the scale, ie built from "stacked thirds". Not all scales lend themselves well to tertian harmony.

Generator

This scale has no generator.

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

* Pitches are shown with C as the root

A{9,1,4}221.2

The following pitch classes are not present in any of the common triads: {11}

view full size

Above is a graph showing opportunities for parsimonious voice leading between triads*. Each line connects two triads that have two common tones, while the third tone changes by one generic scale step.

Diameter 3 2 no F, am, A C♯+, a°

Modes

Modes are the rotational transformation of this scale. Scale 2619 can be rotated to make 6 other scales. The 1st mode is itself.

 2nd mode:Scale 3357 Melodic +64 3rd mode:Scale 1863 Lydian 7+23 4th mode:Scale 2979 Ionian +234 5th mode:Scale 3537 Superlydian Augmented 234 6th mode:Scale 477 Alt 267 7th mode:Scale 1143 Alt 356

Prime

The prime form of this scale is Scale 375

 Scale 375 Infra-Alt 674

Complement

The heptatonic modal family [2619, 3357, 1863, 2979, 3537, 477, 1143] (Forte: 7-13) is the complement of the pentatonic modal family [279, 369, 1809, 2187, 3141] (Forte: 5-13)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 2619 is 2955

 Scale 2955 Neapoitan Major 54

Interval Matrix

Each row is a generic interval, cells contain the specific size of each generic. Useful for identifying contradictions and ambiguities.

Hierarchizability

Based on the work of Niels Verosky, hierarchizability is the measure of repeated patterns with "place-finding" remainder bits, applied recursively to the binary representation of a scale. For a full explanation, read Niels' paper, Hierarchizability as a Predictor of Scale Candidacy. The variable k is the maximum number of remainders allowed at each level of recursion, for them to count as an increment of hierarchizability. A high hierarchizability score is a good indicator of scale candidacy, ie a measure of usefulness for producing pleasing music. There is a strong correlation between scales with maximal hierarchizability and scales that are in popular use in a variety of world musical traditions.

kHierarchizabilityBreakdown PatternDiagram
11110111000101
21110111000101
31110111000101
43([1]0[1][1])1000([1]0[1][1])
53([1]0[1][1])1000([1]0[1][1])

Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 2619 is chiral, and its enantiomorph is scale 2955

 Scale 2955 Neapoitan Major 54

Center of Gravity

If tones of the scale are imagined as identical physical objects spaced around a unit circle, the center of gravity is the point where the scale is balanced.

Position with origin in the center (0.195146, -0.195146) 0.275978 45 150

Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b. A note about the multipliers: multiplying by 1 changes nothing, multiplying by 11 produces the same result as inversion. 5 is the only non-degenerate multiplier, with the multiplier 7 producing the inverse of 5.

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 2619       T0I <11,0> 2955
T1 <1,1> 1143      T1I <11,1> 1815
T2 <1,2> 2286      T2I <11,2> 3630
T3 <1,3> 477      T3I <11,3> 3165
T4 <1,4> 954      T4I <11,4> 2235
T5 <1,5> 1908      T5I <11,5> 375
T6 <1,6> 3816      T6I <11,6> 750
T7 <1,7> 3537      T7I <11,7> 1500
T8 <1,8> 2979      T8I <11,8> 3000
T9 <1,9> 1863      T9I <11,9> 1905
T10 <1,10> 3726      T10I <11,10> 3810
T11 <1,11> 3357      T11I <11,11> 3525
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 939      T0MI <7,0> 2745
T1M <5,1> 1878      T1MI <7,1> 1395
T2M <5,2> 3756      T2MI <7,2> 2790
T3M <5,3> 3417      T3MI <7,3> 1485
T4M <5,4> 2739      T4MI <7,4> 2970
T5M <5,5> 1383      T5MI <7,5> 1845
T6M <5,6> 2766      T6MI <7,6> 3690
T7M <5,7> 1437      T7MI <7,7> 3285
T8M <5,8> 2874      T8MI <7,8> 2475
T9M <5,9> 1653      T9MI <7,9> 855
T10M <5,10> 3306      T10MI <7,10> 1710
T11M <5,11> 2517      T11MI <7,11> 3420

The transformations that map this set to itself are: T0

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

 Scale 2617 Pylimic Scale 2621 Euphoric Scale 2623 Aerylyllic Scale 2611 Raga Vasanta Scale 2615 Alt 6735 Scale 2603 Gadimic Scale 2587 PUTian Scale 2651 Dysphoric Scale 2683 Thodyllic Scale 2747 Stythyllic Scale 2875 Ganyllic Scale 2107 MUTian Scale 2363 Unorthodox Scale 3131 Alt 765 Scale 3643 Kydyllic Scale 571 Kynimic Scale 1595 Alt 65

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow and Lilypond, graph visualization by Graphviz, audio by TiMIDIty and FFMPEG. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission, and ©2023 Robert Bedwell, used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (DOI, Patent owner: Dokuz Eylül University, Used with Permission.

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with naming the Carnatic ragas. Thanks to Niels Verosky for collaborating on the Hierarchizability diagrams. Thanks to u/howaboot for inventing the Center of Gravity metrics.