The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 471: "Dodian"

Scale 471: Dodian, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Common Names

Zeitler
Dodian
Dozenal
Cuwian

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

7 (heptatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,1,2,4,6,7,8}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

7-15

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

[4]

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

no

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

4 (multihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

2 (dicohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

3

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

6

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

yes

Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[1, 1, 2, 2, 1, 1, 4]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<4, 4, 2, 4, 4, 3>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p4m4n2s4d4t3

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,2,4}
<2> = {2,3,4,5}
<3> = {4,5,6}
<4> = {6,7,8}
<5> = {7,8,9,10}
<6> = {8,10,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

2.286

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

2.299

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.803

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

[8]

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(16, 35, 96)

Common Triads

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

* Pitches are shown with C as the root

Triad TypeTriad*Pitch ClassesDegreeEccentricityCloseness Centrality
Major TriadsC{0,4,7}221
Minor Triadsc♯m{1,4,8}221
Augmented TriadsC+{0,4,8}221
Diminished Triadsc♯°{1,4,7}221

The following pitch classes are not present in any of the common triads: {2,6}

Parsimonious Voice Leading Between Common Triads of Scale 471. Created by Ian Ring ©2019 C C C+ C+ C->C+ c#° c#° C->c#° c#m c#m C+->c#m c#°->c#m

Above is a graph showing opportunities for parsimonious voice leading between triads*. Each line connects two triads that have two common tones, while the third tone changes by one generic scale step.

Diameter2
Radius2
Self-Centeredyes

Modes

Modes are the rotational transformation of this scale. Scale 471 can be rotated to make 6 other scales. The 1st mode is itself.

2nd mode:
Scale 2283
Scale 2283: Aeolyptian, Ian Ring Music TheoryAeolyptian
3rd mode:
Scale 3189
Scale 3189: Aeolonian, Ian Ring Music TheoryAeolonian
4th mode:
Scale 1821
Scale 1821: Aeradian, Ian Ring Music TheoryAeradian
5th mode:
Scale 1479
Scale 1479: Mela Jalarnava, Ian Ring Music TheoryMela Jalarnava
6th mode:
Scale 2787
Scale 2787: Zyrian, Ian Ring Music TheoryZyrian
7th mode:
Scale 3441
Scale 3441: Thacrian, Ian Ring Music TheoryThacrian

Prime

This is the prime form of this scale.

Complement

The heptatonic modal family [471, 2283, 3189, 1821, 1479, 2787, 3441] (Forte: 7-15) is the complement of the pentatonic modal family [327, 453, 1137, 2211, 3153] (Forte: 5-15)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 471 is 3441

Scale 3441Scale 3441: Thacrian, Ian Ring Music TheoryThacrian

Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 471       T0I <11,0> 3441
T1 <1,1> 942      T1I <11,1> 2787
T2 <1,2> 1884      T2I <11,2> 1479
T3 <1,3> 3768      T3I <11,3> 2958
T4 <1,4> 3441      T4I <11,4> 1821
T5 <1,5> 2787      T5I <11,5> 3642
T6 <1,6> 1479      T6I <11,6> 3189
T7 <1,7> 2958      T7I <11,7> 2283
T8 <1,8> 1821      T8I <11,8> 471
T9 <1,9> 3642      T9I <11,9> 942
T10 <1,10> 3189      T10I <11,10> 1884
T11 <1,11> 2283      T11I <11,11> 3768
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 3441      T0MI <7,0> 471
T1M <5,1> 2787      T1MI <7,1> 942
T2M <5,2> 1479      T2MI <7,2> 1884
T3M <5,3> 2958      T3MI <7,3> 3768
T4M <5,4> 1821      T4MI <7,4> 3441
T5M <5,5> 3642      T5MI <7,5> 2787
T6M <5,6> 3189      T6MI <7,6> 1479
T7M <5,7> 2283      T7MI <7,7> 2958
T8M <5,8> 471       T8MI <7,8> 1821
T9M <5,9> 942      T9MI <7,9> 3642
T10M <5,10> 1884      T10MI <7,10> 3189
T11M <5,11> 3768      T11MI <7,11> 2283

The transformations that map this set to itself are: T0, T8I, T8M, T0MI

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 469Scale 469: Katyrimic, Ian Ring Music TheoryKatyrimic
Scale 467Scale 467: Raga Dhavalangam, Ian Ring Music TheoryRaga Dhavalangam
Scale 475Scale 475: Aeolygian, Ian Ring Music TheoryAeolygian
Scale 479Scale 479: Kocryllic, Ian Ring Music TheoryKocryllic
Scale 455Scale 455: Messiaen Mode 5, Ian Ring Music TheoryMessiaen Mode 5
Scale 463Scale 463: Zythian, Ian Ring Music TheoryZythian
Scale 487Scale 487: Dynian, Ian Ring Music TheoryDynian
Scale 503Scale 503: Thoptyllic, Ian Ring Music TheoryThoptyllic
Scale 407Scale 407: All-Trichord Hexachord, Ian Ring Music TheoryAll-Trichord Hexachord
Scale 439Scale 439: Bythian, Ian Ring Music TheoryBythian
Scale 343Scale 343: Ionorimic, Ian Ring Music TheoryIonorimic
Scale 215Scale 215: Bivian, Ian Ring Music TheoryBivian
Scale 727Scale 727: Phradian, Ian Ring Music TheoryPhradian
Scale 983Scale 983: Thocryllic, Ian Ring Music TheoryThocryllic
Scale 1495Scale 1495: Messiaen Mode 6, Ian Ring Music TheoryMessiaen Mode 6
Scale 2519Scale 2519: Dathyllic, Ian Ring Music TheoryDathyllic

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.