The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 451: "Raga Saugandhini"

Scale 451: Raga Saugandhini, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Common Names

Carnatic Raga
Raga Saugandhini
Hindustani
Yashranjani

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

5 (pentatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,1,6,7,8}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

5-7

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 2161

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

3 (trihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

1 (uncohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

2

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

4

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

no
prime: 199

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Formula

Defines the scale as the sequence of intervals between one tone and the next.

[1, 5, 1, 1, 4]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<3, 1, 0, 1, 3, 2>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p3msd3t2

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,4,5}
<2> = {2,5,6}
<3> = {6,7,10}
<4> = {7,8,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

3.2

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

1.433

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.217

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Common Triads

There are no common triads (major, minor, augmented and diminished) that can be formed using notes in this scale.

Modes

Modes are the rotational transformation of this scale. Scale 451 can be rotated to make 4 other scales. The 1st mode is itself.

2nd mode:
Scale 2273
Scale 2273, Ian Ring Music Theory
3rd mode:
Scale 199
Scale 199: Raga Nabhomani, Ian Ring Music TheoryRaga NabhomaniThis is the prime mode
4th mode:
Scale 2147
Scale 2147, Ian Ring Music Theory
5th mode:
Scale 3121
Scale 3121, Ian Ring Music Theory

Prime

The prime form of this scale is Scale 199

Scale 199Scale 199: Raga Nabhomani, Ian Ring Music TheoryRaga Nabhomani

Complement

The pentatonic modal family [451, 2273, 199, 2147, 3121] (Forte: 5-7) is the complement of the heptatonic modal family [463, 967, 2279, 2531, 3187, 3313, 3641] (Forte: 7-7)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 451 is 2161

Scale 2161Scale 2161, Ian Ring Music Theory

Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 451 is chiral, and its enantiomorph is scale 2161

Scale 2161Scale 2161, Ian Ring Music Theory

Transformations:

T0 451  T0I 2161
T1 902  T1I 227
T2 1804  T2I 454
T3 3608  T3I 908
T4 3121  T4I 1816
T5 2147  T5I 3632
T6 199  T6I 3169
T7 398  T7I 2243
T8 796  T8I 391
T9 1592  T9I 782
T10 3184  T10I 1564
T11 2273  T11I 3128

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 449Scale 449, Ian Ring Music Theory
Scale 453Scale 453: Raditonic, Ian Ring Music TheoryRaditonic
Scale 455Scale 455: Messiaen Mode 5, Ian Ring Music TheoryMessiaen Mode 5
Scale 459Scale 459: Zaptimic, Ian Ring Music TheoryZaptimic
Scale 467Scale 467: Raga Dhavalangam, Ian Ring Music TheoryRaga Dhavalangam
Scale 483Scale 483: Kygimic, Ian Ring Music TheoryKygimic
Scale 387Scale 387, Ian Ring Music Theory
Scale 419Scale 419: Hon-kumoi-joshi, Ian Ring Music TheoryHon-kumoi-joshi
Scale 323Scale 323, Ian Ring Music Theory
Scale 195Scale 195: Messiaen Truncated Mode 5, Ian Ring Music TheoryMessiaen Truncated Mode 5
Scale 707Scale 707, Ian Ring Music Theory
Scale 963Scale 963, Ian Ring Music Theory
Scale 1475Scale 1475, Ian Ring Music Theory
Scale 2499Scale 2499, Ian Ring Music Theory

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy.