The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 2947

Scale 2947, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

41161837294116105072918310504116183
Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

6 (hexatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,1,7,8,9,11}

Forte Number

A code assigned by theorist Alan Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

6-Z4

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

[4]

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

no

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

4 (multihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

2 (dicohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

4

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

5

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

no
prime: 119

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Formula

Defines the scale as the sequence of intervals between one tone and the next.

[1, 6, 1, 1, 2, 1]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<4, 3, 2, 3, 2, 1>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hansen.

p2m3n2s3d4t

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,2,6}
<2> = {2,3,7}
<3> = {4,8}
<4> = {5,9,10}
<5> = {6,10,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

4

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

1.433

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.071

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

[8]

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Common Triads

There are no common triads (major, minor, augmented and diminished) that can be formed using notes in this scale.

Modes

Modes are the rotational transformation of this scale. Scale 2947 can be rotated to make 5 other scales. The 1st mode is itself.

2nd mode:
Scale 3521
Scale 3521, Ian Ring Music Theory
3rd mode:
Scale 119
Scale 119, Ian Ring Music TheoryThis is the prime mode
4th mode:
Scale 2107
Scale 2107, Ian Ring Music Theory
5th mode:
Scale 3101
Scale 3101, Ian Ring Music Theory
6th mode:
Scale 1799
Scale 1799, Ian Ring Music Theory

Prime

The prime form of this scale is Scale 119

Scale 119Scale 119, Ian Ring Music Theory

Complement

The hexatonic modal family [2947, 3521, 119, 2107, 3101, 1799] (Forte: 6-Z4) is the complement of the hexatonic modal family [287, 497, 2191, 3143, 3619, 3857] (Forte: 6-Z37)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 2947 is 2107

Scale 2107Scale 2107, Ian Ring Music Theory

Transformations:

T0 2947  T0I 2107
T1 1799  T1I 119
T2 3598  T2I 238
T3 3101  T3I 476
T4 2107  T4I 952
T5 119  T5I 1904
T6 238  T6I 3808
T7 476  T7I 3521
T8 952  T8I 2947
T9 1904  T9I 1799
T10 3808  T10I 3598
T11 3521  T11I 3101

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 2945Scale 2945, Ian Ring Music Theory
Scale 2949Scale 2949, Ian Ring Music Theory
Scale 2951Scale 2951, Ian Ring Music Theory
Scale 2955Scale 2955: Thorian, Ian Ring Music TheoryThorian
Scale 2963Scale 2963: Bygian, Ian Ring Music TheoryBygian
Scale 2979Scale 2979: Gyptian, Ian Ring Music TheoryGyptian
Scale 3011Scale 3011, Ian Ring Music Theory
Scale 2819Scale 2819, Ian Ring Music Theory
Scale 2883Scale 2883, Ian Ring Music Theory
Scale 2691Scale 2691, Ian Ring Music Theory
Scale 2435Scale 2435: Raga Deshgaur, Ian Ring Music TheoryRaga Deshgaur
Scale 3459Scale 3459, Ian Ring Music Theory
Scale 3971Scale 3971, Ian Ring Music Theory
Scale 899Scale 899, Ian Ring Music Theory
Scale 1923Scale 1923, Ian Ring Music Theory

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy.