The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 3745: "Xuvian"

Scale 3745: Xuvian, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Common Names

Dozenal
Xuvian

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

6 (hexatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,5,7,9,10,11}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

6-9

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 175

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

3 (trihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

2 (dicohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

3

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

5

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

no
prime: 175

Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[5, 2, 2, 1, 1, 1]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<3, 4, 2, 2, 3, 1>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p3m2n2s4d3t

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,2,5}
<2> = {2,3,4,6,7}
<3> = {3,4,5,7,8,9}
<4> = {5,6,8,9,10}
<5> = {7,10,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

4

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

1.866

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.485

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(29, 19, 65)

Common Triads

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

* Pitches are shown with C as the root

Triad TypeTriad*Pitch ClassesDegreeEccentricityCloseness Centrality
Major TriadsF{5,9,0}000

The following pitch classes are not present in any of the common triads: {7,10,11}

Since there is only one common triad in this scale, there are no opportunities for parsimonious voice leading between triads.

Modes

Modes are the rotational transformation of this scale. Scale 3745 can be rotated to make 5 other scales. The 1st mode is itself.

2nd mode:
Scale 245
Scale 245: Raga Dipak, Ian Ring Music TheoryRaga Dipak
3rd mode:
Scale 1085
Scale 1085: Gozian, Ian Ring Music TheoryGozian
4th mode:
Scale 1295
Scale 1295: Huyian, Ian Ring Music TheoryHuyian
5th mode:
Scale 2695
Scale 2695: Rakian, Ian Ring Music TheoryRakian
6th mode:
Scale 3395
Scale 3395: Vepian, Ian Ring Music TheoryVepian

Prime

The prime form of this scale is Scale 175

Scale 175Scale 175: Bewian, Ian Ring Music TheoryBewian

Complement

The hexatonic modal family [3745, 245, 1085, 1295, 2695, 3395] (Forte: 6-9) is the complement of the hexatonic modal family [175, 1505, 1925, 2135, 3115, 3605] (Forte: 6-9)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 3745 is 175

Scale 175Scale 175: Bewian, Ian Ring Music TheoryBewian

Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 3745 is chiral, and its enantiomorph is scale 175

Scale 175Scale 175: Bewian, Ian Ring Music TheoryBewian

Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 3745       T0I <11,0> 175
T1 <1,1> 3395      T1I <11,1> 350
T2 <1,2> 2695      T2I <11,2> 700
T3 <1,3> 1295      T3I <11,3> 1400
T4 <1,4> 2590      T4I <11,4> 2800
T5 <1,5> 1085      T5I <11,5> 1505
T6 <1,6> 2170      T6I <11,6> 3010
T7 <1,7> 245      T7I <11,7> 1925
T8 <1,8> 490      T8I <11,8> 3850
T9 <1,9> 980      T9I <11,9> 3605
T10 <1,10> 1960      T10I <11,10> 3115
T11 <1,11> 3920      T11I <11,11> 2135
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 2695      T0MI <7,0> 3115
T1M <5,1> 1295      T1MI <7,1> 2135
T2M <5,2> 2590      T2MI <7,2> 175
T3M <5,3> 1085      T3MI <7,3> 350
T4M <5,4> 2170      T4MI <7,4> 700
T5M <5,5> 245      T5MI <7,5> 1400
T6M <5,6> 490      T6MI <7,6> 2800
T7M <5,7> 980      T7MI <7,7> 1505
T8M <5,8> 1960      T8MI <7,8> 3010
T9M <5,9> 3920      T9MI <7,9> 1925
T10M <5,10> 3745       T10MI <7,10> 3850
T11M <5,11> 3395      T11MI <7,11> 3605

The transformations that map this set to itself are: T0, T10M

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 3747Scale 3747: Myrian, Ian Ring Music TheoryMyrian
Scale 3749Scale 3749: Raga Sorati, Ian Ring Music TheoryRaga Sorati
Scale 3753Scale 3753: Phraptian, Ian Ring Music TheoryPhraptian
Scale 3761Scale 3761: Raga Madhuri, Ian Ring Music TheoryRaga Madhuri
Scale 3713Scale 3713: Xibian, Ian Ring Music TheoryXibian
Scale 3729Scale 3729: Starimic, Ian Ring Music TheoryStarimic
Scale 3777Scale 3777: Yarian, Ian Ring Music TheoryYarian
Scale 3809Scale 3809: Yelian, Ian Ring Music TheoryYelian
Scale 3617Scale 3617: Wovian, Ian Ring Music TheoryWovian
Scale 3681Scale 3681: Xahian, Ian Ring Music TheoryXahian
Scale 3873Scale 3873: Yoyian, Ian Ring Music TheoryYoyian
Scale 4001Scale 4001: Ziyian, Ian Ring Music TheoryZiyian
Scale 3233Scale 3233: Unbian, Ian Ring Music TheoryUnbian
Scale 3489Scale 3489: Vuvian, Ian Ring Music TheoryVuvian
Scale 2721Scale 2721: Raga Puruhutika, Ian Ring Music TheoryRaga Puruhutika
Scale 1697Scale 1697: Raga Kuntvarali, Ian Ring Music TheoryRaga Kuntvarali

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.