The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 1221: "Epyritonic"

Scale 1221: Epyritonic, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Common Names

Zeitler
Epyritonic
Dozenal
Hifian

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

5 (pentatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,2,6,7,10}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

5-30

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 1125

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

1 (unhemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

0 (ancohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

3

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

4

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

no
prime: 339

Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[2, 4, 1, 3, 2]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<1, 2, 1, 3, 2, 1>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p2m3ns2dt

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,2,3,4}
<2> = {4,5,6}
<3> = {6,7,8}
<4> = {8,9,10,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

2

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

2.049

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.664

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Proper

Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(0, 5, 34)

Common Triads

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

* Pitches are shown with C as the root

Triad TypeTriad*Pitch ClassesDegreeEccentricityCloseness Centrality
Minor Triadsgm{7,10,2}110.5
Augmented TriadsD+{2,6,10}110.5

The following pitch classes are not present in any of the common triads: {0}

Parsimonious Voice Leading Between Common Triads of Scale 1221. Created by Ian Ring ©2019 D+ D+ gm gm D+->gm

Above is a graph showing opportunities for parsimonious voice leading between triads*. Each line connects two triads that have two common tones, while the third tone changes by one generic scale step.

Diameter1
Radius1
Self-Centeredyes

Modes

Modes are the rotational transformation of this scale. Scale 1221 can be rotated to make 4 other scales. The 1st mode is itself.

2nd mode:
Scale 1329
Scale 1329: Epygitonic, Ian Ring Music TheoryEpygitonic
3rd mode:
Scale 339
Scale 339: Zaptitonic, Ian Ring Music TheoryZaptitonicThis is the prime mode
4th mode:
Scale 2217
Scale 2217: Kagitonic, Ian Ring Music TheoryKagitonic
5th mode:
Scale 789
Scale 789: Zogitonic, Ian Ring Music TheoryZogitonic

Prime

The prime form of this scale is Scale 339

Scale 339Scale 339: Zaptitonic, Ian Ring Music TheoryZaptitonic

Complement

The pentatonic modal family [1221, 1329, 339, 2217, 789] (Forte: 5-30) is the complement of the heptatonic modal family [855, 1395, 1485, 1845, 2475, 2745, 3285] (Forte: 7-30)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 1221 is 1125

Scale 1125Scale 1125: Ionaritonic, Ian Ring Music TheoryIonaritonic

Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 1221 is chiral, and its enantiomorph is scale 1125

Scale 1125Scale 1125: Ionaritonic, Ian Ring Music TheoryIonaritonic

Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 1221       T0I <11,0> 1125
T1 <1,1> 2442      T1I <11,1> 2250
T2 <1,2> 789      T2I <11,2> 405
T3 <1,3> 1578      T3I <11,3> 810
T4 <1,4> 3156      T4I <11,4> 1620
T5 <1,5> 2217      T5I <11,5> 3240
T6 <1,6> 339      T6I <11,6> 2385
T7 <1,7> 678      T7I <11,7> 675
T8 <1,8> 1356      T8I <11,8> 1350
T9 <1,9> 2712      T9I <11,9> 2700
T10 <1,10> 1329      T10I <11,10> 1305
T11 <1,11> 2658      T11I <11,11> 2610
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 3141      T0MI <7,0> 1095
T1M <5,1> 2187      T1MI <7,1> 2190
T2M <5,2> 279      T2MI <7,2> 285
T3M <5,3> 558      T3MI <7,3> 570
T4M <5,4> 1116      T4MI <7,4> 1140
T5M <5,5> 2232      T5MI <7,5> 2280
T6M <5,6> 369      T6MI <7,6> 465
T7M <5,7> 738      T7MI <7,7> 930
T8M <5,8> 1476      T8MI <7,8> 1860
T9M <5,9> 2952      T9MI <7,9> 3720
T10M <5,10> 1809      T10MI <7,10> 3345
T11M <5,11> 3618      T11MI <7,11> 2595

The transformations that map this set to itself are: T0

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 1223Scale 1223: Phryptimic, Ian Ring Music TheoryPhryptimic
Scale 1217Scale 1217: Hician, Ian Ring Music TheoryHician
Scale 1219Scale 1219: Hidian, Ian Ring Music TheoryHidian
Scale 1225Scale 1225: Raga Samudhra Priya, Ian Ring Music TheoryRaga Samudhra Priya
Scale 1229Scale 1229: Raga Simharava, Ian Ring Music TheoryRaga Simharava
Scale 1237Scale 1237: Salimic, Ian Ring Music TheorySalimic
Scale 1253Scale 1253: Zolimic, Ian Ring Music TheoryZolimic
Scale 1157Scale 1157: Alkian, Ian Ring Music TheoryAlkian
Scale 1189Scale 1189: Suspended Pentatonic, Ian Ring Music TheorySuspended Pentatonic
Scale 1093Scale 1093: Lydic, Ian Ring Music TheoryLydic
Scale 1349Scale 1349: Tholitonic, Ian Ring Music TheoryTholitonic
Scale 1477Scale 1477: Raga Jaganmohanam, Ian Ring Music TheoryRaga Jaganmohanam
Scale 1733Scale 1733: Raga Sarasvati, Ian Ring Music TheoryRaga Sarasvati
Scale 197Scale 197: Bekian, Ian Ring Music TheoryBekian
Scale 709Scale 709: Raga Shri Kalyan, Ian Ring Music TheoryRaga Shri Kalyan
Scale 2245Scale 2245: Raga Vaijayanti, Ian Ring Music TheoryRaga Vaijayanti
Scale 3269Scale 3269: Raga Malarani, Ian Ring Music TheoryRaga Malarani

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.