The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 1713: "Raga Khamas"

Scale 1713: Raga Khamas, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Common Names

Carnatic
Raga Khamas
Unknown / Unsorted
Desya Khamas
Bahudari
Zeitler
Garimic
Dozenal
Komian

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

6 (hexatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,4,5,7,9,10}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

6-Z25

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 429

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

2 (dihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

0 (ancohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

2

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

5

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

no
prime: 363

Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[4, 1, 2, 2, 1, 2]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<2, 3, 3, 2, 4, 1>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p4m2n3s3d2t

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,2,4}
<2> = {3,4,5,6}
<3> = {5,7}
<4> = {6,7,8,9}
<5> = {8,10,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

2.333

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

2.232

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.767

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(12, 9, 55)

Common Triads

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

* Pitches are shown with C as the root

Triad TypeTriad*Pitch ClassesDegreeEccentricityCloseness Centrality
Major TriadsC{0,4,7}221
F{5,9,0}131.5
Minor Triadsam{9,0,4}221
Diminished Triads{4,7,10}131.5
Parsimonious Voice Leading Between Common Triads of Scale 1713. Created by Ian Ring ©2019 C C C->e° am am C->am F F F->am

Above is a graph showing opportunities for parsimonious voice leading between triads*. Each line connects two triads that have two common tones, while the third tone changes by one generic scale step.

Diameter3
Radius2
Self-Centeredno
Central VerticesC, am
Peripheral Verticese°, F

Triad Polychords

Also known as Bi-Triadic Hexatonics (a term coined by mDecks), and related to Generic Modality Compression (a method for guitar by Mick Goodrick and Tim Miller), these are two common triads that when combined use all the tones in this scale.

There is 1 way that this hexatonic scale can be split into two common triads.


Diminished: {4, 7, 10}
Major: {5, 9, 0}

Modes

Modes are the rotational transformation of this scale. Scale 1713 can be rotated to make 5 other scales. The 1st mode is itself.

2nd mode:
Scale 363
Scale 363: Soptimic, Ian Ring Music TheorySoptimicThis is the prime mode
3rd mode:
Scale 2229
Scale 2229: Raga Nalinakanti, Ian Ring Music TheoryRaga Nalinakanti
4th mode:
Scale 1581
Scale 1581: Raga Bagesri, Ian Ring Music TheoryRaga Bagesri
5th mode:
Scale 1419
Scale 1419: Raga Kashyapi, Ian Ring Music TheoryRaga Kashyapi
6th mode:
Scale 2757
Scale 2757: Raga Nishadi, Ian Ring Music TheoryRaga Nishadi

Prime

The prime form of this scale is Scale 363

Scale 363Scale 363: Soptimic, Ian Ring Music TheorySoptimic

Complement

The hexatonic modal family [1713, 363, 2229, 1581, 1419, 2757] (Forte: 6-Z25) is the complement of the hexatonic modal family [663, 741, 1209, 1833, 2379, 3237] (Forte: 6-Z47)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 1713 is 429

Scale 429Scale 429: Koptimic, Ian Ring Music TheoryKoptimic

Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 1713 is chiral, and its enantiomorph is scale 429

Scale 429Scale 429: Koptimic, Ian Ring Music TheoryKoptimic

Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 1713       T0I <11,0> 429
T1 <1,1> 3426      T1I <11,1> 858
T2 <1,2> 2757      T2I <11,2> 1716
T3 <1,3> 1419      T3I <11,3> 3432
T4 <1,4> 2838      T4I <11,4> 2769
T5 <1,5> 1581      T5I <11,5> 1443
T6 <1,6> 3162      T6I <11,6> 2886
T7 <1,7> 2229      T7I <11,7> 1677
T8 <1,8> 363      T8I <11,8> 3354
T9 <1,9> 726      T9I <11,9> 2613
T10 <1,10> 1452      T10I <11,10> 1131
T11 <1,11> 2904      T11I <11,11> 2262
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 2823      T0MI <7,0> 3099
T1M <5,1> 1551      T1MI <7,1> 2103
T2M <5,2> 3102      T2MI <7,2> 111
T3M <5,3> 2109      T3MI <7,3> 222
T4M <5,4> 123      T4MI <7,4> 444
T5M <5,5> 246      T5MI <7,5> 888
T6M <5,6> 492      T6MI <7,6> 1776
T7M <5,7> 984      T7MI <7,7> 3552
T8M <5,8> 1968      T8MI <7,8> 3009
T9M <5,9> 3936      T9MI <7,9> 1923
T10M <5,10> 3777      T10MI <7,10> 3846
T11M <5,11> 3459      T11MI <7,11> 3597

The transformations that map this set to itself are: T0

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 1715Scale 1715: Harmonic Minor Inverse, Ian Ring Music TheoryHarmonic Minor Inverse
Scale 1717Scale 1717: Mixolydian, Ian Ring Music TheoryMixolydian
Scale 1721Scale 1721: Mela Vagadhisvari, Ian Ring Music TheoryMela Vagadhisvari
Scale 1697Scale 1697: Raga Kuntvarali, Ian Ring Music TheoryRaga Kuntvarali
Scale 1705Scale 1705: Raga Manohari, Ian Ring Music TheoryRaga Manohari
Scale 1681Scale 1681: Raga Valaji, Ian Ring Music TheoryRaga Valaji
Scale 1745Scale 1745: Raga Vutari, Ian Ring Music TheoryRaga Vutari
Scale 1777Scale 1777: Saptian, Ian Ring Music TheorySaptian
Scale 1585Scale 1585: Raga Khamaji Durga, Ian Ring Music TheoryRaga Khamaji Durga
Scale 1649Scale 1649: Bolimic, Ian Ring Music TheoryBolimic
Scale 1841Scale 1841: Thogimic, Ian Ring Music TheoryThogimic
Scale 1969Scale 1969: Stylian, Ian Ring Music TheoryStylian
Scale 1201Scale 1201: Mixolydian Pentatonic, Ian Ring Music TheoryMixolydian Pentatonic
Scale 1457Scale 1457: Raga Kamalamanohari, Ian Ring Music TheoryRaga Kamalamanohari
Scale 689Scale 689: Raga Nagasvaravali, Ian Ring Music TheoryRaga Nagasvaravali
Scale 2737Scale 2737: Raga Hari Nata, Ian Ring Music TheoryRaga Hari Nata
Scale 3761Scale 3761: Raga Madhuri, Ian Ring Music TheoryRaga Madhuri

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.