 The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

# Scale 2355: "Raga Lalita" ### Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

### Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

## Common Names

Carnatic
Raga Lalita
Unknown / Unsorted
Sohini
Hamsanandi
Hindustani
Lalit Bhairav
Zeitler
Katycrimic
Dozenal
Orfian

## Analysis

#### Cardinality

Cardinality is the count of how many pitches are in the scale.

6 (hexatonic)

#### Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,1,4,5,8,11}

#### Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

6-Z44

#### Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

#### Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

#### Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

#### Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 2451

#### Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

3 (trihemitonic)

#### Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

1 (uncohemitonic)

#### Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

3

#### Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

5

#### Prime Form

Describes if this scale is in prime form, using the Starr/Rahn algorithm.

no
prime: 615

#### Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

#### Deep Scale

A deep scale is one where the interval vector has 6 different digits, an indicator of maximum hierarchization.

no

#### Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[1, 3, 1, 3, 3, 1]

#### Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<3, 1, 3, 4, 3, 1>

#### Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p3m4n3sd3t

#### Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,3}
<2> = {2,4,6}
<3> = {5,7}
<4> = {6,8,10}
<5> = {9,11}

#### Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

2.333

#### Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

#### Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

#### Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

2.25

#### Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.796

#### Myhill Property

A scale has Myhill Property if the Distribution Spectra have exactly two specific intervals for every generic interval.

no

#### Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

#### Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

#### Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

#### Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(12, 1, 45)

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

* Pitches are shown with C as the root

E{4,8,11}231.5
fm{5,8,0}321.17

Above is a graph showing opportunities for parsimonious voice leading between triads*. Each line connects two triads that have two common tones, while the third tone changes by one generic scale step.

Diameter 3 2 no C+, fm c♯m, C♯, E, f°

## Modes

Modes are the rotational transformation of this scale. Scale 2355 can be rotated to make 5 other scales. The 1st mode is itself.

 2nd mode:Scale 3225 Ionalimic 3rd mode:Scale 915 Raga Kalagada 4th mode:Scale 2505 Mydimic 5th mode:Scale 825 Thyptimic 6th mode:Scale 615 Schoenberg Hexachord This is the prime mode

## Prime

The prime form of this scale is Scale 615

 Scale 615 Schoenberg Hexachord

## Complement

The hexatonic modal family [2355, 3225, 915, 2505, 825, 615] (Forte: 6-Z44) is the complement of the hexatonic modal family [411, 867, 1587, 2253, 2481, 2841] (Forte: 6-Z19)

## Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 2355 is 2451

 Scale 2451 Raga Bauli

## Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 2355 is chiral, and its enantiomorph is scale 2451

 Scale 2451 Raga Bauli

## Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 2355       T0I <11,0> 2451
T1 <1,1> 615      T1I <11,1> 807
T2 <1,2> 1230      T2I <11,2> 1614
T3 <1,3> 2460      T3I <11,3> 3228
T4 <1,4> 825      T4I <11,4> 2361
T5 <1,5> 1650      T5I <11,5> 627
T6 <1,6> 3300      T6I <11,6> 1254
T7 <1,7> 2505      T7I <11,7> 2508
T8 <1,8> 915      T8I <11,8> 921
T9 <1,9> 1830      T9I <11,9> 1842
T10 <1,10> 3660      T10I <11,10> 3684
T11 <1,11> 3225      T11I <11,11> 3273
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 435      T0MI <7,0> 2481
T1M <5,1> 870      T1MI <7,1> 867
T2M <5,2> 1740      T2MI <7,2> 1734
T3M <5,3> 3480      T3MI <7,3> 3468
T4M <5,4> 2865      T4MI <7,4> 2841
T5M <5,5> 1635      T5MI <7,5> 1587
T6M <5,6> 3270      T6MI <7,6> 3174
T7M <5,7> 2445      T7MI <7,7> 2253
T8M <5,8> 795      T8MI <7,8> 411
T9M <5,9> 1590      T9MI <7,9> 822
T10M <5,10> 3180      T10MI <7,10> 1644
T11M <5,11> 2265      T11MI <7,11> 3288

The transformations that map this set to itself are: T0

## Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

 Scale 2353 Raga Girija Scale 2357 Raga Sarasanana Scale 2359 Gadian Scale 2363 Kataptian Scale 2339 Raga Kshanika Scale 2347 Raga Viyogavarali Scale 2323 Doptitonic Scale 2387 Paptimic Scale 2419 Raga Lalita Scale 2483 Double Harmonic Scale 2099 Raga Megharanji Scale 2227 Raga Gaula Scale 2611 Raga Vasanta Scale 2867 Socrian Scale 3379 Verdi's Scala Enigmatica Descending Scale 307 Raga Megharanjani Scale 1331 Raga Vasantabhairavi

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.