The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 3097: "Tiwian"

Scale 3097: Tiwian, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Common Names

Dozenal
Tiwian

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

5 (pentatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,3,4,10,11}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

5-6

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 775

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

3 (trihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

1 (uncohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

3

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

4

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

no
prime: 103

Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[3, 1, 6, 1, 1]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<3, 1, 1, 2, 2, 1>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p2m2nsd3t

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,3,6}
<2> = {2,4,7}
<3> = {5,8,10}
<4> = {6,9,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

4

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

1.25

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

4.967

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(16, 1, 30)

Common Triads

There are no common triads (major, minor, augmented and diminished) that can be formed using notes in this scale.

Modes

Modes are the rotational transformation of this scale. Scale 3097 can be rotated to make 4 other scales. The 1st mode is itself.

2nd mode:
Scale 899
Scale 899: Foqian, Ian Ring Music TheoryFoqian
3rd mode:
Scale 2497
Scale 2497: Peqian, Ian Ring Music TheoryPeqian
4th mode:
Scale 103
Scale 103: Apuian, Ian Ring Music TheoryApuianThis is the prime mode
5th mode:
Scale 2099
Scale 2099: Raga Megharanji, Ian Ring Music TheoryRaga Megharanji

Prime

The prime form of this scale is Scale 103

Scale 103Scale 103: Apuian, Ian Ring Music TheoryApuian

Complement

The pentatonic modal family [3097, 899, 2497, 103, 2099] (Forte: 5-6) is the complement of the heptatonic modal family [415, 995, 2255, 2545, 3175, 3635, 3865] (Forte: 7-6)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 3097 is 775

Scale 775Scale 775: Raga Putrika, Ian Ring Music TheoryRaga Putrika

Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 3097 is chiral, and its enantiomorph is scale 775

Scale 775Scale 775: Raga Putrika, Ian Ring Music TheoryRaga Putrika

Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 3097       T0I <11,0> 775
T1 <1,1> 2099      T1I <11,1> 1550
T2 <1,2> 103      T2I <11,2> 3100
T3 <1,3> 206      T3I <11,3> 2105
T4 <1,4> 412      T4I <11,4> 115
T5 <1,5> 824      T5I <11,5> 230
T6 <1,6> 1648      T6I <11,6> 460
T7 <1,7> 3296      T7I <11,7> 920
T8 <1,8> 2497      T8I <11,8> 1840
T9 <1,9> 899      T9I <11,9> 3680
T10 <1,10> 1798      T10I <11,10> 3265
T11 <1,11> 3596      T11I <11,11> 2435
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 397      T0MI <7,0> 1585
T1M <5,1> 794      T1MI <7,1> 3170
T2M <5,2> 1588      T2MI <7,2> 2245
T3M <5,3> 3176      T3MI <7,3> 395
T4M <5,4> 2257      T4MI <7,4> 790
T5M <5,5> 419      T5MI <7,5> 1580
T6M <5,6> 838      T6MI <7,6> 3160
T7M <5,7> 1676      T7MI <7,7> 2225
T8M <5,8> 3352      T8MI <7,8> 355
T9M <5,9> 2609      T9MI <7,9> 710
T10M <5,10> 1123      T10MI <7,10> 1420
T11M <5,11> 2246      T11MI <7,11> 2840

The transformations that map this set to itself are: T0

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 3099Scale 3099: Tixian, Ian Ring Music TheoryTixian
Scale 3101Scale 3101: Tiyian, Ian Ring Music TheoryTiyian
Scale 3089Scale 3089: Tirian, Ian Ring Music TheoryTirian
Scale 3093Scale 3093: Buqian, Ian Ring Music TheoryBuqian
Scale 3081Scale 3081: Temian, Ian Ring Music TheoryTemian
Scale 3113Scale 3113: Tigian, Ian Ring Music TheoryTigian
Scale 3129Scale 3129: Toqian, Ian Ring Music TheoryToqian
Scale 3161Scale 3161: Kodimic, Ian Ring Music TheoryKodimic
Scale 3225Scale 3225: Ionalimic, Ian Ring Music TheoryIonalimic
Scale 3353Scale 3353: Phraptimic, Ian Ring Music TheoryPhraptimic
Scale 3609Scale 3609: Woqian, Ian Ring Music TheoryWoqian
Scale 2073Scale 2073: Moyian, Ian Ring Music TheoryMoyian
Scale 2585Scale 2585: Otlian, Ian Ring Music TheoryOtlian
Scale 1049Scale 1049: Gidian, Ian Ring Music TheoryGidian

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.