The Exciting Universe Of Music Theory
presents

more than you ever wanted to know about...

Scale 3683: "Dycrian"

Scale 3683: Dycrian, Ian Ring Music Theory

Bracelet Diagram

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks imperfect tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz Diagram

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

Common Names

Zeitler
Dycrian
Dozenal
Xajian

Analysis

Cardinality

Cardinality is the count of how many pitches are in the scale.

7 (heptatonic)

Pitch Class Set

The tones in this scale, expressed as numbers from 0 to 11

{0,1,5,6,9,10,11}

Forte Number

A code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations.

7-6

Rotational Symmetry

Some scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity.

none

Reflection Axes

If a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones.

none

Palindromicity

A palindromic scale has the same pattern of intervals both ascending and descending.

no

Chirality

A chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph.

yes
enantiomorph: 2255

Hemitonia

A hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist.

5 (multihemitonic)

Cohemitonia

A cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist.

3 (tricohemitonic)

Imperfections

An imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale.

3

Modes

Modes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes.

6

Prime Form

Describes if this scale is in prime form, using the Rahn/Ring formula.

no
prime: 415

Generator

Indicates if the scale can be constructed using a generator, and an origin.

none

Deep Scale

A deep scale is one where the interval vector has 6 different digits.

no

Interval Structure

Defines the scale as the sequence of intervals between one tone and the next.

[1, 4, 1, 3, 1, 1, 1]

Interval Vector

Describes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones.

<5, 3, 3, 4, 4, 2>

Interval Spectrum

The same as the Interval Vector, but expressed in a syntax used by Howard Hanson.

p4m4n3s3d5t2

Distribution Spectra

Describes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum.

<1> = {1,3,4}
<2> = {2,4,5}
<3> = {3,5,6,8}
<4> = {4,6,7,9}
<5> = {7,8,10}
<6> = {8,9,11}

Spectra Variation

Determined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality.

3.143

Maximally Even

A scale is maximally even if the tones are optimally spaced apart from each other.

no

Maximal Area Set

A scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even.

no

Interior Area

Area of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1.

2.183

Polygon Perimeter

Perimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle.

5.734

Myhill Property

A scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval.

no

Balanced

A scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point.

no

Ridge Tones

Ridge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry.

none

Propriety

Also known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper".

Improper

Heteromorphic Profile

Defined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where c is the number of contradictions, a is the number of ambiguities, and d is the number of differences. When c is zero, the scale is Proper. When a is also zero, the scale is Strictly Proper.

(45, 26, 90)

Tertian Harmonic Chords

Tertian chords are made from alternating members of the scale, ie built from "stacked thirds". Not all scales lend themselves well to tertian harmony.

Common Triads

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

* Pitches are shown with C as the root

Triad TypeTriad*Pitch ClassesDegreeEccentricityCloseness Centrality
Major TriadsF{5,9,0}231.5
F♯{6,10,1}231.5
Minor Triadsf♯m{6,9,1}321.17
a♯m{10,1,5}231.5
Augmented TriadsC♯+{1,5,9}321.17
Diminished Triadsf♯°{6,9,0}231.5

The following pitch classes are not present in any of the common triads: {11}

Parsimonious Voice Leading Between Common Triads of Scale 3683. Created by Ian Ring ©2019 C#+ C#+ F F C#+->F f#m f#m C#+->f#m a#m a#m C#+->a#m f#° f#° F->f#° f#°->f#m F# F# f#m->F# F#->a#m

Above is a graph showing opportunities for parsimonious voice leading between triads*. Each line connects two triads that have two common tones, while the third tone changes by one generic scale step.

Diameter3
Radius2
Self-Centeredno
Central VerticesC♯+, f♯m
Peripheral VerticesF, f♯°, F♯, a♯m

Modes

Modes are the rotational transformation of this scale. Scale 3683 can be rotated to make 6 other scales. The 1st mode is itself.

2nd mode:
Scale 3889
Scale 3889: Parian, Ian Ring Music TheoryParian
3rd mode:
Scale 499
Scale 499: Ionaptian, Ian Ring Music TheoryIonaptian
4th mode:
Scale 2297
Scale 2297: Thylian, Ian Ring Music TheoryThylian
5th mode:
Scale 799
Scale 799: Lolian, Ian Ring Music TheoryLolian
6th mode:
Scale 2447
Scale 2447: Thagian, Ian Ring Music TheoryThagian
7th mode:
Scale 3271
Scale 3271: Mela Raghupriya, Ian Ring Music TheoryMela Raghupriya

Prime

The prime form of this scale is Scale 415

Scale 415Scale 415: Aeoladian, Ian Ring Music TheoryAeoladian

Complement

The heptatonic modal family [3683, 3889, 499, 2297, 799, 2447, 3271] (Forte: 7-6) is the complement of the pentatonic modal family [103, 899, 2099, 2497, 3097] (Forte: 5-6)

Inverse

The inverse of a scale is a reflection using the root as its axis. The inverse of 3683 is 2255

Scale 2255Scale 2255: Dylian, Ian Ring Music TheoryDylian

Enantiomorph

Only scales that are chiral will have an enantiomorph. Scale 3683 is chiral, and its enantiomorph is scale 2255

Scale 2255Scale 2255: Dylian, Ian Ring Music TheoryDylian

Transformations:

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is <a,b> where each tone of the set x is transformed by the equation y = ax + b

Abbrev Operation Result Abbrev Operation Result
T0 <1,0> 3683       T0I <11,0> 2255
T1 <1,1> 3271      T1I <11,1> 415
T2 <1,2> 2447      T2I <11,2> 830
T3 <1,3> 799      T3I <11,3> 1660
T4 <1,4> 1598      T4I <11,4> 3320
T5 <1,5> 3196      T5I <11,5> 2545
T6 <1,6> 2297      T6I <11,6> 995
T7 <1,7> 499      T7I <11,7> 1990
T8 <1,8> 998      T8I <11,8> 3980
T9 <1,9> 1996      T9I <11,9> 3865
T10 <1,10> 3992      T10I <11,10> 3635
T11 <1,11> 3889      T11I <11,11> 3175
Abbrev Operation Result Abbrev Operation Result
T0M <5,0> 743      T0MI <7,0> 3305
T1M <5,1> 1486      T1MI <7,1> 2515
T2M <5,2> 2972      T2MI <7,2> 935
T3M <5,3> 1849      T3MI <7,3> 1870
T4M <5,4> 3698      T4MI <7,4> 3740
T5M <5,5> 3301      T5MI <7,5> 3385
T6M <5,6> 2507      T6MI <7,6> 2675
T7M <5,7> 919      T7MI <7,7> 1255
T8M <5,8> 1838      T8MI <7,8> 2510
T9M <5,9> 3676      T9MI <7,9> 925
T10M <5,10> 3257      T10MI <7,10> 1850
T11M <5,11> 2419      T11MI <7,11> 3700

The transformations that map this set to itself are: T0

Nearby Scales:

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 3681Scale 3681: Xahian, Ian Ring Music TheoryXahian
Scale 3685Scale 3685: Kodian, Ian Ring Music TheoryKodian
Scale 3687Scale 3687: Zonyllic, Ian Ring Music TheoryZonyllic
Scale 3691Scale 3691: Badyllic, Ian Ring Music TheoryBadyllic
Scale 3699Scale 3699: Galyllic, Ian Ring Music TheoryGalyllic
Scale 3651Scale 3651: Wuqian, Ian Ring Music TheoryWuqian
Scale 3667Scale 3667: Kaptian, Ian Ring Music TheoryKaptian
Scale 3619Scale 3619: Thanimic, Ian Ring Music TheoryThanimic
Scale 3747Scale 3747: Myrian, Ian Ring Music TheoryMyrian
Scale 3811Scale 3811: Epogyllic, Ian Ring Music TheoryEpogyllic
Scale 3939Scale 3939: Dogyllic, Ian Ring Music TheoryDogyllic
Scale 3171Scale 3171: Zythimic, Ian Ring Music TheoryZythimic
Scale 3427Scale 3427: Zacrian, Ian Ring Music TheoryZacrian
Scale 2659Scale 2659: Katynimic, Ian Ring Music TheoryKatynimic
Scale 1635Scale 1635: Sygimic, Ian Ring Music TheorySygimic

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.