The Exciting Universe Of Music Theory

presents

more than you ever wanted to know about...

Nearly identical to the Phrygian scale except for its raised third; this is called Phrygian Dominant because it shares much of its harmonic material with phrygian, but its 1-3-5-7 members form a dominant seventh chord. This scale is used liberally in flamenco music. It is also colloquially called the "Hava Nagila" scale, due to its use in the immensely popular song played at bar/bat mitzvah celebrations.

The bracelet shows tones that are in this scale, starting from the top (12 o'clock), going clockwise in ascending semitones. The "i" icon marks *imperfect* tones that do not have a tone a fifth above. Dotted lines indicate axes of symmetry.

Tonnetz diagrams are popular in Neo-Riemannian theory. Notes are arranged in a lattice where perfect 5th intervals are from left to right, major third are northeast, and major 6th intervals are northwest. Other directions are inverse of their opposite. This diagram helps to visualize common triads (they're triangles) and circle-of-fifth relationships (horizontal lines).

- Western Modern
- Phrygian Dominant
- Phrygian Major
- Harmonic Major Inverse

- Dozenal
- Espian

- Exoticisms
- Spanish Romani
- Dorico Flamenco
- Altered Hungarian

- Carnatic
- Mela Vakulabharanam
- Raga Jogiya

- Unknown / Unsorted
- Ahiri
- Zilof
- Humayun

- Hindustani
- Vativasantabhairavi

- Arabic
- Camel Scale
- Maqam Hijaz-Nahawand

- Iranian
- Dastgāh-e Homāyoun

- Jewish
- Ahava Rabba
- Freygish

- Ancient Greek
- Hitzaz

- Western Altered
- Mixolydian Flat 9 Flat 13
- Mixolydian Flat 2 Flat 6

- Zeitler
- Ionalian

- Carnatic Melakarta
- Vakulabharanam

- Carnatic Numbered Melakarta
- 14th Melakarta raga

## CardinalityCardinality is the count of how many pitches are in the scale. |
7 (heptatonic) |

## Pitch Class SetThe tones in this scale, expressed as numbers from 0 to 11 |
{0,1,4,5,7,8,10} |

## Forte NumberA code assigned by theorist Allen Forte, for this pitch class set and all of its transpositional (rotation) and inversional (reflection) transformations. |
7-32 |

## Rotational SymmetrySome scales have rotational symmetry, sometimes known as "limited transposition". If there are any rotational symmetries, these are the intervals of periodicity. |
none |

## Reflection AxesIf a scale has an axis of reflective symmetry, then it can transform into itself by inversion. It also implies that the scale has Ridge Tones. Notably an axis of reflection can occur directly on a tone or half way between two tones. |
none |

## PalindromicityA palindromic scale has the same pattern of intervals both ascending and descending. |
no |

## ChiralityA chiral scale can not be transformed into its inverse by rotation. If a scale is chiral, then it has an enantiomorph. |
yes enantiomorph: 2485 |

## HemitoniaA hemitone is two tones separated by a semitone interval. Hemitonia describes how many such hemitones exist. |
3 (trihemitonic) |

## CohemitoniaA cohemitone is an instance of two adjacent hemitones. Cohemitonia describes how many such cohemitones exist. |
0 (ancohemitonic) |

## ImperfectionsAn imperfection is a tone which does not have a perfect fifth above it in the scale. This value is the quantity of imperfections in this scale. |
3 |

## ModesModes are the rotational transformations of this scale. This number does not include the scale itself, so the number is usually one less than its cardinality; unless there are rotational symmetries then there are even fewer modes. |
6 |

## Prime FormDescribes if this scale is in prime form, using the Rahn/Ring formula. |
no prime: 859 |

## GeneratorIndicates if the scale can be constructed using a generator, and an origin. |
none |

## Deep ScaleA deep scale is one where the interval vector has 6 different digits. |
no |

## Interval StructureDefines the scale as the sequence of intervals between one tone and the next. |
[1, 3, 1, 2, 1, 2, 2] |

## Interval VectorDescribes the intervallic content of the scale, read from left to right as the number of occurences of each interval size from semitone, up to six semitones. |
<3, 3, 5, 4, 4, 2> |

## Interval SpectrumThe same as the Interval Vector, but expressed in a syntax used by Howard Hanson. |
p^{4}m^{4}n^{5}s^{3}d^{3}t^{2} |

## Distribution SpectraDescribes the specific interval sizes that exist for each generic interval size. Each generic <g> has a spectrum {n,...}. The Spectrum Width is the difference between the highest and lowest values in each spectrum. |
<1> = {1,2,3} <2> = {3,4} <3> = {4,5,6} <4> = {6,7,8} <5> = {8,9} <6> = {9,10,11} |

## Spectra VariationDetermined by the Distribution Spectra; this is the sum of all spectrum widths divided by the scale cardinality. |
1.429 |

## Maximally EvenA scale is maximally even if the tones are optimally spaced apart from each other. |
no |

## Maximal Area SetA scale is a maximal area set if a polygon described by vertices dodecimetrically placed around a circle produces the maximal interior area for scales of the same cardinality. All maximally even sets have maximal area, but not all maximal area sets are maximally even. |
no |

## Interior AreaArea of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle, ie a circle with radius of 1. |
2.549 |

## Polygon PerimeterPerimeter of the polygon described by vertices placed for each tone of the scale dodecimetrically around a unit circle. |
5.967 |

## Myhill PropertyA scale has Myhill Property if the Interval Spectra has exactly two specific intervals for every generic interval. |
no |

## BalancedA scale is balanced if the distribution of its tones would satisfy the "centrifuge problem", ie are placed such that it would balance on its centre point. |
no |

## Ridge TonesRidge Tones are those that appear in all transpositions of a scale upon the members of that scale. Ridge Tones correspond directly with axes of reflective symmetry. |
none |

## ProprietyAlso known as Rothenberg Propriety, named after its inventor. Propriety describes whether every specific interval is uniquely mapped to a generic interval. A scale is either "Proper", "Strictly Proper", or "Improper". | Proper |

## Heteromorphic ProfileDefined by Norman Carey (2002), the heteromorphic profile is an ordered triple of (c, a, d) where | (0, 18, 82) |

Tertian chords are made from alternating members of the scale, ie built from "stacked thirds". Not all scales lend themselves well to tertian harmony.

These are the common triads (major, minor, augmented and diminished) that you can create from members of this scale.

** Pitches are shown with C as the root*

Triad Type | Triad^{*} | Pitch Classes | Degree | Eccentricity | Closeness Centrality |
---|---|---|---|---|---|

Major Triads | C | {0,4,7} | 3 | 3 | 1.8 |

C♯ | {1,5,8} | 3 | 3 | 1.7 | |

Minor Triads | c♯m | {1,4,8} | 4 | 3 | 1.6 |

fm | {5,8,0} | 2 | 3 | 2 | |

a♯m | {10,1,5} | 3 | 3 | 1.8 | |

Augmented Triads | C+ | {0,4,8} | 3 | 3 | 1.7 |

Diminished Triads | c♯° | {1,4,7} | 2 | 3 | 1.9 |

e° | {4,7,10} | 2 | 3 | 2 | |

g° | {7,10,1} | 2 | 3 | 2 | |

a♯° | {10,1,4} | 2 | 3 | 1.9 |

Above is a graph showing opportunities for parsimonious voice leading between triads^{*}. Each line connects two triads that have two common tones, while the third tone changes by one generic scale step.

Diameter | 3 |
---|---|

Radius | 3 |

Self-Centered | yes |

Modes are the rotational transformation of this scale. Scale 1459 can be rotated to make 6 other scales. The 1st mode is itself.

2nd mode: Scale 2777 | Aeolian Harmonic | ||||

3rd mode: Scale 859 | Ultralocrian | This is the prime mode | |||

4th mode: Scale 2477 | Harmonic Minor | ||||

5th mode: Scale 1643 | Locrian Natural 6 | ||||

6th mode: Scale 2869 | Major Augmented | ||||

7th mode: Scale 1741 | Lydian Diminished |

The prime form of this scale is Scale 859

Scale 859 | Ultralocrian |

The heptatonic modal family [1459, 2777, 859, 2477, 1643, 2869, 1741] (Forte: 7-32) is the complement of the pentatonic modal family [595, 665, 805, 1225, 2345] (Forte: 5-32)

The inverse of a scale is a reflection using the root as its axis. The inverse of 1459 is 2485

Scale 2485 | Harmonic Major |

Only scales that are chiral will have an enantiomorph. Scale 1459 is chiral, and its enantiomorph is scale 2485

Scale 2485 | Harmonic Major |

In the abbreviation, the subscript number after "T" is the number of semitones of tranposition, "M" means the pitch class is multiplied by 5, and "I" means the result is inverted. Operation is an identical way to express the same thing; the syntax is `<a,b>` where each tone of the set `x` is transformed by the equation `y = ax + b`

Abbrev | Operation | Result | Abbrev | Operation | Result | |||
---|---|---|---|---|---|---|---|---|

T_{0} | <1,0> | 1459 | T_{0}I | <11,0> | 2485 | |||

T_{1} | <1,1> | 2918 | T_{1}I | <11,1> | 875 | |||

T_{2} | <1,2> | 1741 | T_{2}I | <11,2> | 1750 | |||

T_{3} | <1,3> | 3482 | T_{3}I | <11,3> | 3500 | |||

T_{4} | <1,4> | 2869 | T_{4}I | <11,4> | 2905 | |||

T_{5} | <1,5> | 1643 | T_{5}I | <11,5> | 1715 | |||

T_{6} | <1,6> | 3286 | T_{6}I | <11,6> | 3430 | |||

T_{7} | <1,7> | 2477 | T_{7}I | <11,7> | 2765 | |||

T_{8} | <1,8> | 859 | T_{8}I | <11,8> | 1435 | |||

T_{9} | <1,9> | 1718 | T_{9}I | <11,9> | 2870 | |||

T_{10} | <1,10> | 3436 | T_{10}I | <11,10> | 1645 | |||

T_{11} | <1,11> | 2777 | T_{11}I | <11,11> | 3290 | |||

Abbrev | Operation | Result | Abbrev | Operation | Result | |||

T_{0}M | <5,0> | 2359 | T_{0}MI | <7,0> | 3475 | |||

T_{1}M | <5,1> | 623 | T_{1}MI | <7,1> | 2855 | |||

T_{2}M | <5,2> | 1246 | T_{2}MI | <7,2> | 1615 | |||

T_{3}M | <5,3> | 2492 | T_{3}MI | <7,3> | 3230 | |||

T_{4}M | <5,4> | 889 | T_{4}MI | <7,4> | 2365 | |||

T_{5}M | <5,5> | 1778 | T_{5}MI | <7,5> | 635 | |||

T_{6}M | <5,6> | 3556 | T_{6}MI | <7,6> | 1270 | |||

T_{7}M | <5,7> | 3017 | T_{7}MI | <7,7> | 2540 | |||

T_{8}M | <5,8> | 1939 | T_{8}MI | <7,8> | 985 | |||

T_{9}M | <5,9> | 3878 | T_{9}MI | <7,9> | 1970 | |||

T_{10}M | <5,10> | 3661 | T_{10}MI | <7,10> | 3940 | |||

T_{11}M | <5,11> | 3227 | T_{11}MI | <7,11> | 3785 |

The transformations that map this set to itself are: T_{0}

These are other scales that are similar to this one, created by adding a tone, removing a tone, or moving one note up or down a semitone.

Scale 1457 | Raga Kamalamanohari | |||

Scale 1461 | Major-Minor | |||

Scale 1463 | Ugrian | |||

Scale 1467 | Spanish Phrygian | |||

Scale 1443 | Raga Phenadyuti | |||

Scale 1451 | Phrygian | |||

Scale 1427 | Lolimic | |||

Scale 1491 | Namanarayani | |||

Scale 1523 | Zothyllic | |||

Scale 1331 | Raga Vasantabhairavi | |||

Scale 1395 | Locrian Dominant | |||

Scale 1203 | Pagimic | |||

Scale 1715 | Harmonic Minor Inverse | |||

Scale 1971 | Aerynyllic | |||

Scale 435 | Raga Purna Pancama | |||

Scale 947 | Mela Gayakapriya | |||

Scale 2483 | Double Harmonic | |||

Scale 3507 | Maqam Hijaz |

This scale analysis was created by Ian Ring, Canadian Composer of works for Piano, and total music theory nerd. Scale notation generated by VexFlow, graph visualization by Graphviz, and MIDI playback by MIDI.js. All other diagrams and visualizations are © Ian Ring. Some scale names used on this and other pages are ©2005 William Zeitler (http://allthescales.org) used with permission.

Pitch spelling algorithm employed here is adapted from a method by Uzay Bora, Baris Tekin Tezel, and Alper Vahaplar. (An algorithm for spelling the pitches of any musical scale) Contact authors Patent owner: Dokuz Eylül University, Used with Permission. Contact TTO

Tons of background resources contributed to the production of this summary; for a list of these peruse this Bibliography. Special thanks to Richard Repp for helping with technical accuracy, and George Howlett for assistance with the Carnatic ragas.